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Abstract

The goal of this thesis is to build a system that automatically creates synthetic data
for enabling data science endeavors. To meet this goal, we present the Synthetic Data
Vault (SDV), a system that builds generative models of relational databases. We are
able to sample from the model and create synthetic data, hence the name SDV.

When implementing the SDV, we developed an algorithm that computes statis-
tics at the intersection of related database tables. We then use a state-of-the-art
multivariate modeling approach to model this data. The SDV iterates through all
possible relations, ultimately creating a model for the entire database. Once this
model is computed, the same relational information allows the SDV to synthesize
data by sampling from any part of the database.

After building the SDV, we used it to generate synthetic data for five different
publicly available datasets. We then published the datasets and asked data scientists
to develop predictive models for them as part of a crowdsourced experiment. On
May 18, 2016, preliminary analysis from the ongoing experiment provided evidence
that the synthetic data can successfully replace original data for data science. Our
analysis indicates that there is no significant difference in the work produced by data
scientists who used synthetic data as opposed to real data. We conclude that the
SDV is a viable solution for synthetic data generation.

Our primary contribution is that we designed and implemented the first generative
modeling system for relational databases that demonstratively synthesizes realistic
data.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist
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Chapter 1

Introduction

Businesses are looking to make data-driven decisions by using machine learning meth-

ods. Unfortunately, many organizations who wish to adopt these techniques face

barriers. Some do not have the resources to collect large datasets that are relevant

to their business. Others struggle with hiring data scientists, and have difficulties

sharing sensitive data with them.

We contend that such businesses would benefit greatly from the ability to create

synthetic data, data that is not original but maintains the same mathematical proper-

ties and relations. This would result in the ability to generate bulk data on-demand,

and publish it freely.

To this end, we introduce the Synthetic Data Vault (SDV), a system that generates

synthetic data by building a fully generative model of the original database. The SDV

can synthesize data according to the organization’s specifications across any complex,

relational dataset. In this chapter, we first motivate the thesis by providing some

compelling reasons for synthesizing data. We illustrate how the SDV can be applied

in industry, and end by providing goals for the thesis.

1.1 Motivations for Synthesizing Data

Our motivation for synthesizing data comes from industry, where organizations are

using data to solve predictive problems essential for business. We have identified two
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areas where organizations can benefit from synthetic data generation.

1.1.1 Populating Sample Databases

For new start ups, a barrier to using data is not having enough of it. New and

traditional machine learning assume a large number of data points that would come

with a large userbase. For example, the recently published AlphaGo system samples

30 million data points after analyzing millions of games [13], and ImageNet uses a

neural network trained with 15 million images from a publicly available dataset [6].

While businesses may not want to perform sophisticated analysis, the general trend

in machine learning is to use more data.

A generative model of a small database is useful for such organizations because

they can use the model to create synthetic data in bulk. Companies can use the

synthetic data for:

∙ Performance testing with large amounts of data. With a synthetic data model,

they can sample as many datapoints as they want, scaling the data size to many

Terabyes, and then evaluate the performance of their algorithm on it.

∙ Testing software internally. When developing software and debugging, develop-

ers who wish to have a sample dataset on their local machine or in their workflow

can have synthetic data instead of real data. Furthermore, the synthetic data

integrates well with existing applications because it follows the same format as

the original.

∙ Releasing portions of data for marketing outreach. For example, when compa-

nies want to share an open source software and demonstrate it on data, they

can release the synthetic data instead of real data. The synthetic data follows

the same mathematical properties as the original, so its analysis remains valid

for real data.

18



1.1.2 Scaling Data Science Efforts

Organizations wishing to scale their data science efforts must increase the number of

people who can work with their data. For example, consider an organization trying

to hire freelance data scientists or put data up for a competition on Kaggle [5]. To be

able to share data, the organization would need to anonymize sensitive information

or remove portions of it entirely. Below, we briefly describe how both these tasks are

non-trivial and subject to flaws.

Anonymization

Anonymizing person-specific data is an option that allows organizations to publish

data without leaking sensitive information like names or social security numbers.

However, deciding which information to anonymize and which to share is a non-

trivial task. For example, organizations in the past have freely released the date

of birth, gender, and zip code of their customers. Alarmingly, these three pieces

of information uniquely identify at least 87% of US citizens [14]. Furthermore, it

may be possible to cross-reference information from multiple sources to de-anonymize

additional information.

Omission

Omitting sensitive data is a different option that fully protects the privacy. In partic-

ular, a 𝑘-anonymity scheme purposefully omits individual entries to ensure that any

row of data is indistinguishable from at least 𝑘 − 1 others [15]. While this is secure,

it fundamentally changes the structure of the data. The modifications force anyone

working with the data to change their approach.

Only synthetic data can mimic the properties of the original data while also ensuring

that the real data is not leaked. By generating synthetic data, the organization does

not have to spend resources deciding which data to share, and how to anonymize it.
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ID
1
2
3
4
5
....

Birthdate
07/26/94
03/16/92
01/17/87
08/16/94
09/04/82

....

Gender
F

M
M
M
....

Balance
427.30
1001.42
33.33
54.33

5000.40
...

SDV
model synthesize

ID
1
2
3
4
5
....

Birthdate
11/26/88
06/14/91
04/15/90
02/17/95
03/29/84

....

Gender
M
F
F

M
....

Balance
4002.50
352.47
129.75
37.20
427.92

....

Figure 1-1: Original data that a company has, and the synthetic data that the com-
pany produces using the SDV. The synthetic data has the same mathematical prop-
erties as the original. It has the same ranges, distribution of values, and covariances.
The data is presented in the same format, as in datetime column, Birthdate. It even
models anomalies, such as some of the genders being missing in the original data.

1.2 Synthetic Data Vault

The Synthetic Data Vault (SDV) represents our solution for data science. It is an

end-to-end system that models and synthesizes data automatically such that the

synthetic data is virtually indistinguishable from the original. Figure 1-1 illustrates

a data sample before it is modeled, and synthetic data that results as an output.

The organization can then store the original customer information internally, and

only allow employees with special clearance to view this sensitive data. The synthetic

data, however, can be widely spread. The company can share it on competitions such

as Kaggle, use it to run predictive analytics, or display it on their website to advertise

its services.

1.2.1 Goals

On a high level, we wish to produce an end-to-end system that automates the mod-

eling and synthetic data generation for relational databases. Our success should be

measured along three dimensions:

1. Generalizability: The SDV should be able to work on all relational databases

without any modifications. It should automate as much of the modeling and

synthesizing as possible.
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2. Usability: The SDV should expose a simple API that allows users to specify

an input and then perform synthesis to their specification. It should be able to

synthesize data for individual cells, columns, tables, or the entire database.

3. Accuracy: The SDV should synthesize output that can realistically replace

the original data. This requires us to formulate metrics to measure differences

between the synthesized data and the original data.

Note the focus on accuracy means that we are not concerned with optimizing

computational time or memory. We believe that saving our computations on disk

is a reasonable one-time cost for this first iteration of the SDV. Furthermore, our

generalizability goal does not include modeling natural language or time series data.

These are interesting extensions for future work, but out of scope for the current

project.

1.3 Thesis Roadmap

The rest of the thesis is organized as follows:

Chapter 2 provides an overview of the SDV, describing a 4-stage pipeline for a

user synthesizing data. Chapter 3 then reviews terminology used for both databases

and statistical analysis. We also provide our perspective on the intersection of these

two fields.

Chapter 4 covers the technical details behind the SDV’s generative modeling

method, providing pseudocode to illustrate how we apply the method for an entire

database. Chapter 5 then describes the method to synthesize data using the model.

Chapter 6 validates the SDV by using it to model real-world complex datasets,

and designing an experiment to measure the effect of working with synthesized data

instead of real data. Chapter 7 summarizes our key findings and contributions.

By the end of this thesis, you will understand a new algorithm for modeling

relations between tables, and new techniques for data synthesis across multiple tables.
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Chapter 2

Overview

This chapter provides an overview of the completed SDV workflow from a user’s

perspective. The workflow is broken down into four steps, as illustrated in Figure 2-

1. First, the user must collect and format the data into a database that the SDV can

understand. Then, they provide some basic information about the structure of the

database so that SDV knows what to model. Once the SDV finishes its computations,

the user is exposed to an API that can perform inference and synthesize data at

varying granularities. These steps are the same for all databases.

Organize Synthesize DataSpecify Structure Learn Model

ΦΣ [Φ-1 (F0(X0))]

ID

Table

Table

Table

Number

Table

Table

Table

Table

Figure 2-1: The SDV workflow: The user collects and formats the data, specifies the
structure and data types, runs the modeling system, and then uses the learned model
to synthesize new data.
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2.1 Organize

Before supplying the data to the SDV, the user must format the database’s data

into separate files, one for each table. The SDV makes two assumptions about the

relationships between the tables.1

∙ The database should only have many-to-one relationships. While certain databases

allow many-to-many relations, these can easily be converted into two many-to-

one relations by introducing a new, intermediate table.

∙ The database should not have circular references. That is, if table A relates to

B and B relates to C, then C cannot relate back to A. In practice, we find that

if such references are necessary, the layout of the database is failing to properly

capture relations in the data on its own. Thus, it is unreasonable to expect a

model to understand the complexities behind the relations as well.

2.2 Specify Structure

The user must specify basic information about the structure of each table, and provide

it as metadata for the database. This specification is similar to a schema in an SQL

database.

For each column of data, the user must specify the type of data that is included

in the column. The SDV expects that data falls into one of five categories:

1. Number: A numerical value, either an integer or decimal.

2. Categorical: Discrete categories. These can be represented as text or numbers.

3. Datetime: Time information, with a specified format.

4. ID: Either identifying information for the table rows, or references to other

tables in the database. These could be represented as numerical values or as

text.

5. Text: Raw text that should not be modeled. If there is any structure to the

text, the user can provide a regex describing it.
1Relationships and other database terminology is described in further detail in the next chapter.
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Columns with ID information are special because they contain relationship infor-

mation between multiple tables. If the ID column of a table references an ID column

of another table, the user must specify that table.

Although our goal is to automate much of the modeling framework, we find that

asking the user to supply a meta file is unavoidable. In particular, we could not find

a way to successfully recover the relations from different tables, because each organi-

zation uses different naming conventions for the columns. Furthermore, while it may

be possible to automate discovering the type of data, we still run into problems such

as discovering the format for datetime columns or differentiating between numbers,

categories, and ID. These may be the goals for a future project, which can then be

layered on top of the SDV’s system.

Furthermore, all SQL databases require a schema, so the information should be

readily available to the database administrator. In order to compute the generative

model, the SDV accepts a meta file containing all of this information as input.

2.3 Learn Model

The user then invokes the SDV’s script to learn the generative model. The SDV

iterates through tables sequentially, using a modeling algorithm designed to account

for the relations between the tables.

For each table, the SDV discovers a structure of dependence. If other tables refer-

ence the current one, dependence exists, and the SDV computes aggregate statistics

for the other tables. The aggregate statistics then get added to the original table,

forming an extended table. This extended table is then modeled. It captures the

generating information for the original table columns, as well as all the dependencies

between tables.

The SDV uses some simple optimizations to improve efficiency. It saves all the ex-

tended tables and model information to external files, so that subsequent invocations

for the same database do not unnecessarily perform the same computations.
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2.4 Synthesize Data

After instantiating the SDV for a database, the user is exposed to a simple API with

three main functions:

1. database.get_table

2. table.synth_row

3. table.synth_children

The first returns a model for a particular table in the database. Once the table

has been found, the user can perform the other two functions using it.

The synth_row function both synthesizes rows and infers missing data. If the

function is called without any arguments, it synthesizes a complete row. Optionally,

the user can specify particular values for any subset of columns. When this happens,

the synth_row function performs inference and returns the complete row with the

missing values filled in.

The synth_children function synthesizes complete tables that reference the cur-

rent table. By applying this function iteratively on the newly-synthesized tables, the

user can synthesize an entire database.

The results of both synth_row and synth_children match the original data ex-

actly. The SDV takes steps to delete extended data, round values, and generate

random text for textual columns. The result leads to rows and tables containing fully

synthesized data that can be used in place of the original.
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Chapter 3

Concepts and Terminology

The goal of building generative models for relational databases involves bringing to-

gether work from databases and statistical analysis. For readers who are unfamiliar

with either of these areas, this chapter reviews concepts and terminology. The last

section offers our perspective on the overlap between the two fields by drawing con-

nections between the concepts.

3.1 Databases

Databases store large amounts of information in the form of tables. A single table

represents a particular set of objects, such as pets, web access logs, or stores. It is

arranged such that every column represents an attribute of the object (name, age,

timestamp, etc.), which means that data in a column is of the same type. Every

row represents an instance of the object. In order to distinguish particular instances,

there is usually a column that acts as a reference ID. This column is known as the

primary key of the table; each instance has a unique primary key ID.

In a relational database, there are multiple tables representing different collections

of objects. The database is relational because the objects may be connected to each

other. For example, many pets could belong to the same store. In order to express

this relation, some have columns containing a primary key ID of 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 table. In

this example, the pets could have a column that refers to the store ID. Such a column
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Figure 3-1: Parent and child rows based on key references. The parent’s first column
contains its primary keys, one of which is “3”. The child’s second column contains
references to the parent. The ones that have a “3” are referring to the same parent
row.

is called a foreign key. Foreign keys in a table don’t have to be unique; many pets

could refer to the same store. The mapping is inherently a many-to-one relationship.1

In a table relation, the table with the primary key is the parent table, while

the table with the foreign key references is the child table. The names capture the

notion that multiple rows in a child table reference the same row in the parent table.

Figure 3-1 summarizes this information. The process of finding all the child rows that

reference a parent is called a conditional primary key lookup.

Note that the relation defines which parent is the table and which is the child. A

table may be a parent in one relation, and a child in another relation. In this thesis,

we call a table a leaf table if it is never a parent in any of its relations.

1If the foreign keys are also unique, this becomes a one-to-one relationship. Some database
models also allow many-to-many relationships by allowing a foreign key to reference another foreign
key, but the SDV assumes this is not the case.
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Figure 3-2: The probability frequencies of a standard normal distribution. The prob-

ability of observing value 𝑥 in a Gaussian distribution is Pr(𝑥) = 1
𝜎
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2𝜎2 . The
standard normal is a special case where mean 𝜇 = 0 and variance 𝜎2 = 1.

3.2 Statistics

Statistics involves lists of numerical values that represent different measurements of

the same phenomenon, such as a person’s age, or height. This measurement is known

as a random variable, because it can take on different values. However, some values

may be more or less frequent than others. The distribution of the random variable

assigns a probability to each possible value of a measurement trial.

It is possible to encode the probability distribution of a random variable us-

ing a cumulative distribution function (cdf). This function accepts an input

𝑥 that describes a single measurement trial, and returns 𝑢, the percentile rank of

the measurement in the overall distribution. Mathematically, 𝑢 ∈ [0, 1] such that

𝑃𝑟(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 ≤ 𝑥) = 𝑢. If the distribution is 𝑑, the 𝑐𝑑𝑓 is 𝐹𝑑(𝑥) = 𝑢 and its

inverse is 𝐹−1
𝑑 (𝑢) = 𝑥.

In statistics, there is a special distribution called the Gaussian distribution that

is fully described by the mean, 𝜇, and variance, 𝜎2. When 𝜇 = 0 and 𝜎2 = 1, the

Gaussian distribution is called a standard normal distribution. Figure 3-2 shows a

plot of this distribution. A Gaussian distribution’s 𝑐𝑑𝑓 is denoted by Φ𝜇,𝜎2(𝑥), while

a standard normal distribution’s 𝑐𝑑𝑓 is simply Φ(𝑥).
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Figure 3-3: A visual depiction of applying the Gaussian Copula process to normalize
an observation by applying 𝑛 = Φ−1(𝐹 (𝑥)). Calculating 𝐹 (𝑥) yields a value 𝑢 ∈ [0, 1]
representing the proportion of shaded area at the left. Then Φ−1(𝑢) yields a value 𝑛
by matching the shaded area in a Gaussian distribution.

Sometimes, a distribution of a random variable may be in a complex or undesirable

shape. It is possible to convert the distribution into the shape of another distribution

by applying a mathematical transform. The approach we use in this thesis is the

Gaussian Copula process, which transforms a value 𝑥 by applying 𝑛 = Φ−1 (𝐹𝑑 (𝑥)).

The result of applying the Gaussian Copula process is a new distribution that looks

like the standard normal distribution. Figure 3-3 visually depicts this process.

Most real-world problems contain multiple random variables, each with a dis-

tribution. The covariance between two distributions measures how values in one

distribution are associated with values in another. If 𝑎 and 𝑏 are distributions, their

covariance is denoted by 𝜎𝑎𝑏 = 𝜎𝑏𝑎. A positive covariance means higher values in 𝑎

tend to yield higher values in 𝑏; a negative means the opposite.

When there are 𝑛 distributions, there exist 𝑛2 ways to calculate the covariance

between two distributions.2 When each of the covariances are placed in a 𝑛 × 𝑛

matrix, the result is a covariance matrix denoted by Σ.

2The covariance between a distribution and itself is just the variance of the distribution, 𝜎2.
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3.3 Connections

Creating a generative model for a database involves performing statistical analysis. In

order to do this, we drew some high level connections between database and statistical

concepts as summarized by 3.1. The rest of this section elucidates these connections.

Database Concept Statistical Concept

Column Data Random Variables

Table Data Multivariate Distributions

Relations Distribution of Distributions

Table 3.1: High-level connecting ideas between the database domain and the statis-
tical domain.

Column Data as a Random Variable

A table column can correspond to a particular attribute or measurement of an object,

such as height or weight. The values in the column then form a random variable, which

allows us to apply statistical analysis to the column, like calculating the mean 𝜇, or

the 𝑐𝑑𝑓 function, 𝐹 .

Columns with numbers, datetime, or categorical information can be formulated

as a random variables: Numbers are essentially the same as measurements. Date-

time information can be converted to a number by expressing it as the number of

seconds elapsed since Epoch. Categorical information can be converted to numbers

by applying a variety of techniques. Other columns that represent text or ID have

no corresponding conversions, and therefore no corresponding analogue to random

variables.

Table Data as a Multivariate Distribution

The entire table can contain many columns that represent random variables. If this is

the case, this data in each row can be condensed to form a single data point in multidi-

mensional space. The entire table then becomes a collection of such multidimensional
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points, which is similar to a multivariate random variable.

Multivariate random variables have corresponding multivariate distributions. There

also exists a corresponding multivariate Gaussian Copula for them.

Relations as a Distribution of Distributions

In a many-to-one relationship, every row in a parent table is referenced by a subset

of rows in the child table. Each subset of rows is a distribution that can be described

by statistics such as 𝜇.

If there are 𝑛 rows in the parent table, then there are 𝑛 different subsets of children,

and 𝑛 corresponding statistics. We observe that these 𝑛 statistics can form their own

distribution: 𝑑 = [𝜇1, 𝜇2, . . . , 𝜇𝑛].

This new distribution, 𝑑, contains numerical values that represent other distri-

butions. Essentially, it is a distribution of distributions. The SDV especially makes

use of this idea to model the dependencies in data that are induced by foreign key

relations.
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Chapter 4

Generative Modeling Method

This chapter covers the technical details of the SDV’s modeling phase in the overall

workflow presented in Figure 2-1. The goal of the generative modeling phase is

to build a complete model for the entire relational database given meta files and

tables. Ultimately, the SDV’s database modeling method builds generative models

for individual tables. However, it performs extra computations to account for the the

relations between them using a method called Conditional Parameter Aggregation

(CPA). A high-level overview is provided by Figure 4-1.

Metadata

CSV CPA
Extended

tableTable Gaussian Copula

Model

Distributions

Covariance

Figure 4-1: An overview of the generative modeling process. Conditional Parame-
ter Aggregation accounts for the foreign key relations across multiple tables. The
Gaussian Copula process calculates the overall table model.

This chapter is broken into five sections: Section 4.1 reviews a multivariate gener-

ative modeling method we use for a table. This corresponds to the Gaussian Copula

and model steps in Figure 4-1, and provides a foundation for our work. Section 4.2

describes extending the generative model to encompass multiple tables. This is called
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condition parameter aggregation CPA. The next two sections provides additional ad-

justments necessary to make the algorithms more generalizable. Finally, Section 4.5

provides the overall logic for applying our technique. This means recursively applying

CPA for all tables, in order to model the entire database.

4.1 Standalone Table Model

We define a standalone table as a set of rows and columns that we wish to model

independently of any other data. The generative model for a standalone table en-

compasses all columns that represent numerical data,1 and it consists of:

∙ Distributions: The probability distributions of the values in each column

∙ Covariances: How the value of a column affects the value of another column in

the same row

The distribution describes the values in a column, and the covariance describes their

dependence. Together, they form a descriptive model of the entire table.

4.1.1 Distribution

A generative model relies on knowing the distribution shapes of each of its columns.

The shape of the distribution is described by the 𝑐𝑑𝑓 function, 𝐹 , but may be ex-

pensive to calculate. A simplistic estimate is to assume the original distribution is

Gaussian, so that each 𝐹 is completely defined by a 𝜇 and 𝜎2 value. However, this

is not always the case. Instead, we turn to some other common distributions shapes

that are parametrized by different values:

∙ Truncated Gaussian Distribution: Parametrized by the mean 𝜇, variance 𝜎2,

𝑚𝑖𝑛, and 𝑚𝑎𝑥 values

∙ Uniform Distribution: Parametrized by the 𝑚𝑖𝑛 and 𝑚𝑎𝑥 values

∙ Beta Distribution: Parametrized by 𝛼 and 𝛽

1Later, we discuss how to convert other types of data, such as datetime or categorical, into
numercial data
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∙ Exponential Distribution: Parametrized by the decay 𝜆

If the column’s data is not Gaussian, it may be better to use a different distribution.

In order to test for this fit, we use the Kolmogorov-Smirnov test [8], which returns a 𝑝-

value representing the likelihood that the data matches a particular distribution. The

distribution with the higher 𝑝-value is the distribution we use to determine the 𝑐𝑑𝑓

function. Currently, we decide between truncated Gaussian and uniform distributions,

but we provide support to add other distributions.

Note that parameters represent different statistics for each distribution. For this

reason, the SDV also keeps track of the type of distribution that was used to model

each column. This lets the SDV know how to interpret the parameters at a later

stage. For example, if the distribution is uniform, then the parameters represent the

𝑚𝑖𝑛 and 𝑚𝑎𝑥, but if it’s Beta, then they represent 𝛼 and 𝛽.

4.1.2 Covariance

In addition to the distributions, a generative model must also calculate the covariances

between the columns. However, the shape of the distributions might unnecessarily

influence the covariance estimates [12].

For this reason, we turn to the multivariate version of the Gaussian Copula de-

scribed in Section 3.2. The Gaussian Copula removes any bias that the distribution

shape may induce, by converting all column distributions to standard normal before

finding the covariances. Steps to model a Gaussian Copula are:

1. We are given the columns of the table 0, 1, . . . , 𝑛, and their respective cumulative

distribution functions 𝐹0, . . . , 𝐹𝑛.

2. Go through the table row-by-row. Consider each row as a vector

𝑋 = (𝑥0, 𝑥1, . . . , 𝑥𝑛).

3. Convert the row using the Gaussian Copula:

𝑌 = [Φ−1 (𝐹0 (𝑥0)) ,Φ
−1 (𝐹1 (𝑥1)) , . . . ,Φ

−1 (𝐹𝑛 (𝑥𝑛))]

where Φ−1(𝐹𝑖(𝑥𝑖)) is the inverse 𝑐𝑑𝑓 of the Gaussian distribution applied to the

𝑐𝑑𝑓 of the original distribution.
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4. After all the rows are converted, compute the covariance matrix, Σ of the trans-

formed values in the table.

Together, the parameters for each column distribution, and the covariance matrix

Σ becomes the generative model for that table. This model contains all the infor-

mation from the original table in a compact way, and can be used to synthesize new

data for this table.

4.2 Relational Table Model

In a relational database, a table may not be standalone if there are other tables in the

database that refer to it. Thus, to fully account for the additional influence a table

may have on others, its generative model must encompass information from its child

tables. To do this, we developed a method called Conditional Parameter Aggregation

(CPA) that specifies how its children’s information must be incorporated into the

table. Figure 4-2 shows the relevant stage of the pipeline.

Metadata

CSV CPA
Extended

tableTable

Figure 4-2: Aggregating data from multiple child tables creates an extended table
that accounts for the original relations.

This section explains the CPA method. CPA is only necessary when the table

being processed is not a leaf table. This means there is at least one other table with

a column that references rows in the current one. CPA comprises of 4 steps:

1. Iterate through each row in the table.

2. Perform a conditional primary key lookup in the entire database using the ID

of that row. If there are 𝑚 different foreign key columns that refer to the
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current table, then the lookup will yield 𝑚 sets of rows. We call each set

conditional data. Figure 4-3 illustrates such a lookup that identifies 𝑚 = 3 sets

of conditional data.

3. For each set of conditional data, perform the Gaussian Copula process. This

will yield 𝑚 sets of distributions, and 𝑚 sets of covariance matrices, Σ. We

call these values conditional parameters, because they represent parameters of

a model for a subset of data from a child, given a parent ID. This is also shown

by Figure 4-3.

4. Place the conditional parameters as additional values for the row in the original

table.2 The new columns are called derived columns, shown in Figure 4-4.

5. Add a new derived column that expresses the total number of children for each

parent.

The extended table contains both the original and derived columns. It holds

the generating information for the children of each row, so it is essentially a table

containing original values and the generative models for its children. The SDV writes

a the extended table as a separate CSV file, so we do not have to recalculate CPA

for subsequent invocations of the same database.

Subsequently, we can use Gaussian Copula process to create a generative model

of the extended table. This model not only captures the covariances between the

original columns, but the dependence of the conditional parameters on the values in

the original columns. For example, it includes the covariance between original column

𝑇0 and derived column 𝜇2
5.

4.3 Pre-Processing

Both Gaussian Copula and CPA assume there are no missing entries in the col-

umn, and that the values are numerical. When either of assumptions is false, a

2Some values repeat because Σ = Σ𝑇 We drop the repeats to save space.
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Current table Conditional data Conditional parameters

ID

33

T0 T1 T2 T3

33

33

33

A A0 A1 A2

33

33

33

B B3 B4

33

33

33

33

33

C C5 C6

33

Covariance: ΣB=
B33B43

B34B44

Distributions: [(µ3, σ3
2), (µ4, σ4

2)]

Covariance: ΣA=
A00A10A20

A01A11A21

A02A12A22

Distributions: [(µ0, σ0
2), (µ1, σ1

2), (µ2, σ2
2)]

Covariance: ΣC=

Distributions: [(µ5, σ5
2), (µ6, σ6

2)]

C55C65

C56C66

Figure 4-3: An illustration of CPA for a row in table 𝑇 with primary key “33”. Tables
𝐴, 𝐵, and 𝐶 refer to table 𝑇 , so the lookup yields 3 sets of conditional data. Each is
modeled using the Gaussian Copula, yielding conditional parameters.

ID

33

T0 T1 T2 T3 A00 A01 C66
µ0 σ0

2 σ6
2... ...

Original columns

Extended table

Covariances Distributions

Figure 4-4: The result of CPA. Every lookup for a row yields a value, such as 𝜇5 or
𝐵43. The values form their own columns, resulting in an extended table.
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Original Column Type Replaced Column(s) Type
Categorical Number
Datetime Number
Number w/Missing Values Number & Categorical
Categorical w/Missing Values Categorical & Categorical
Datetime w/Missing Values Datetime & Categorical

Table 4.1: Conversions that must be made when pre-processing. If multiple data
types are listed, it means that multiple columns are created from the original column.

pre-processing step is invoked. This step ultimately converts a column of one data

type into one or more columns of another data type, as summarized by Table 4.1.

Note that some data types might require multiple rounds of pre-processing. For

example, a column that is a datetime with missing values is first converted into two

columns of type categorical and datetime. Then, those resulting categorical and

datetime columns are further converted into number columns.

4.3.1 Missing Values

Missing values in a column cannot simply be ignored because the reasons for which

they are missing may reveal some extra information about the data. As an example,

consider a table representing people with a column called weight, which is missing

for some rows. The reasons for missing data falls into one of three categories, so

identified by the statistical analysis community [7]:

1. Missing not at random: The data is missing because of what it’s supposed to

be. Perhaps people who are overweight chose not to disclose their weight, so

knowing that the cell is missing probably means the weight is high.

2. Missing at random:3 The fact that the item is missing is linked with some other

piece of data in that row. For example, perhaps a majority of females did not

disclose their weight. So knowing that a person is female makes it more likely

that the weight column will be missing.
3We realize that this is a confusing name. Think of missing at random to mean that a random

subgroup decided not to supply data.
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3. Missing completely at random: The fact that the item is missing tells us nothing

about the structure of the rest of the data. For example, the database admin

accidentally deleted some of the weights, randomly (oops).

In the first 2 cases, knowing that the value is missing provides further information

about the data itself. Therefore, it is important to model missing values overall.

Furthermore, a high level goal of the SDV is to model and synthesize data that

mimics the format of the original. If the original data has some missing values, the

synthesized must too. Modeling the null values solves this problem.

In the final case, it is not imperative that the missing values are considered from

a numerical perspective, but the SDV does not know this may be the case. Hence,

even though the third case is missing completely at random, the SDV must make a

model.

When the SDV encounters any column that has at least 1 missing value, it replaces

the column with two columns:

∙ A column of the same type, with missing values filled-in by randomly choosing

non-missing values in the same column.

∙ A categorical column that contains “Yes” if the original data was present, and

“No” if the data was missing for that row.

This solution ensures that the original column contains values for all rows, but

also accounts for the fact that some were originally missing.

4.3.2 Categorical

Categorical columns may exist originally in the table, or may be a result pre-processing

missing values. Categorical data also cannot be modeled by the Gaussian Copula or

CPA.

When it encounters a categorical column, the SDV replaces it with a numerical

column containing values in the range [0, 1]. To do this, it uses the following method:

1. Sort the categories from most frequently occurring to least.
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Categorical Numerical

x
“Yes”
“No”

“Maybe”

Pr (x)
0.4
0.5
0.1

“No”                    “Yes”        “Maybe”

0                            0.5                  0.9           1 

Figure 4-5: The method that converts categorical variables to numerical data. Based
on the proportions, “No” is assigned the interval [0, 0.5]; “Yes” is assigned [0.5, 0.9],
and “Maybe” is assigned [0.9, 1]. Each occupies its allocated interval with a Gaussian
distribution.

2. Split the interval [0, 1] into sections based on the cumulative probability for each

category.

3. To convert a category, find the interval [𝑎, 𝑏] ∈ [0, 1] that corresponds to the

category.

4. Chose value between 𝑎 and 𝑏 by sampling from a truncated Gaussian distribution

with 𝜇 at the center of the interval, and 𝜎 = 𝑏−𝑎
6

.

Figure 4-5 shows a visual depiction of this conversion.

Note that while Gaussian distributions are completely defined by 𝜇 and 𝜎2 , the

same is not true for these categorical distributions. Instead, they require new pa-

rameters representing the proportions of each of the 𝑐 categories, 𝑝0, 𝑝1, . . . , 𝑝𝑐 with

0 ≤ 𝑝𝑖 ≤ 1 and
∑︀
𝑖

𝑝𝑖 = 1. These are the conditional parameters that are put in the

extended table for categorical columns.4

Choosing a value using a Gaussian distribution gives dense areas at the center of

each interval, but ensures that the numbers are essentially different. The inverse is

also easy to compute: Given a value 𝑣 ∈ [0, 1], we find the interval that 𝑣 corresponds

to and return its category.

4We save 𝑝0 . . . 𝑝𝑖−1 because the last proportion 𝑝𝑖 can be calculated from the others.
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4.3.3 Datetime

Finally, many tables contain information containing times or dates that is represented

as text. The SDV replaces such columns with numerical values. This is relatively

straightforward, as any timestamp can be expressed as the number of seconds past

Epoch (January 1, 1970). If timestamp represents a time before Epoch, then the

numerical value is negative (number of seconds until Epoch).

4.4 Nomenclature

Both pre-processing and CPA add new columns to the table. A standardized nomen-

clature for these new columns is necessary for two reasons:

∙ No namespace guarantees: From the CPA discussion in Figure 4-3, recall the

figure displayed child rows in organized sets, 𝐴, 𝐵, and 𝐶, and numbered each

column uniquely from 𝐴0 to 𝐴6. In practice, sets and column names are not

guaranteed to be unique, and a single parent table may even have multiple

foreign keys coming from the same table.

∙ Usability: Generic names like 𝐴00 and 𝜇1 provide no explanation about how the

columns were derived from the conditional key lookups, and may be confusing

to the users.

Thus, our goals were to ensure that every new column has a unique name, and

that every unique name clearly defines the computation that created it.
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4.4.1 Definition

The final nomenclature for column names is presented below:

<name> = <derived_name>|<original_name>

<derived_name> = <missing_values>|<CPA>

<missing_values> = ?<name>

<CPA> = <child_table>:<foreign_key>(<value>)

<value> = “count”|<name>*<name>|<name>@int|<name>@category

Original column names are those that have been defined and inputted by the

creator of the database. The SDV cannot control what these may be.

Derived columns can either be the result of having an original column with missing

values, or the result of CPA. For CPA, the prefix is based on the name of the child

table and foreign key. These two pieces of information precisely define the conditional

primary key lookup that was performed before aggregating the data. The type of

aggregation is then described by the value inside the parenthesis. This can be one of

four aggregations:

1. “count”: The columns represents the number of child rows that were returned

by the conditional primary key lookup. All values must be integers.

2. <name>*<name>: This column represents the covariance between two columns.

3. <name>@int: This column represents a distribution parameter for the column.

The particular quantity this describes depends on type of distribution. This is

not valid for categorical columns.

4. <name>@category: This column represents the probability that a member of

the distribution falls into a specific category. This is only valid for categorical

columns. All values must fall in the range [0, 1].

The nomenclature highlights a recursive nature to the database, as each instance

of <name> is replaced by another column that follows the same nomenclature. The
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People
Person ID

Team ID Foreign Key

Weight

Gender

Number

Categorical

Name

Nickname

Text

Text

Primary Key Teams
Team ID Primary Key

Founded Datetime

Name

Mascot

Text

Text

Games
Game ID Primary Key

Winner ID

Loser ID

Foreign Key

Foreign Key

Win Score

Lose Score

Number

Number

Figure 4-6: The database schema for our example. Arrows are drawn from the foreign
key columns to the primary key they reference. Note that the games table has two
separate foreign keys that reference the same teams table. Assume that the numerical
weight column may contain missing cells.

recursion ends with the column names that are provided in the original input data.

Simply by viewing the column names, it is possible to reverse-engineer the structure

of the entire database.

4.4.2 Illustration

This section illustrates nomenclature on a sample database. Our sample database

represents athletes playing games. There are tables representing teams, games, and

people. Many people can belong to the same team. A single team can also win or lose

many games. Figure 4-6 summarizes this information using a visual representation.

The teams table is a parent table with people and games as its children. Note

that people and games do not have any other tables referencing their primary keys

(personID and gameID), making them leaf tables.

When the SDV is given the information for this database, it pulls out all primary

key, foreign key, and text columns because they do not represent random variables.

The remaining data is involved in the CPA and Gaussian Copula process. The SDV

models the people and games table before modeling the teams, because all children

of a table must be processed first.

When it is done, the tables may contain some derived columns based on the

possible null values and the CPA step. Table 4.2 lists all the modeled columns. Our
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nomenclature makes it easy to comprehend the process that was used to calculate the

values in each of the columns.

Note that categorical variables with 𝑐 categories only have 𝑐− 1 categories repre-

sented in the derived columns. Therefore, even though the gender of a person may

be “Male” or “Female”, there is only one column representing the proportions. Sim-

ilarly, ?weight is a derived categorical column because the original weight column

had missing values. The derived column has both “YES” and “NO” entries, but only

one of those proportions is necessary to store.

Also note that the number of parameters in the distribution for different nu-

merical fields may vary. For example, weight has 4 parameters (weight@0 through

weight@3), while winScore and loseScore only have 2. This happens because the

distribution shape of weight is different from winScore and loseScore. In this par-

ticular case, weight may be a truncated normal distribution that needs 4 parameters

for 𝜇, 𝜎2, 𝑚𝑖𝑛, and 𝑚𝑎𝑥; the others may be uniform distributions that just require 2

parameters for 𝑚𝑖𝑛 and 𝑚𝑎𝑥.

Finally, observe that the process of CPA can continue to make new columns if

the teams table had a foreign key reference called leagueID to parent table that

represents leagues (i.e. one league contains many teams). Then the nomenclature

would nest the column names of teams as part of CPA. The model would create

columns with names such as:

teams:leagueID(people:teamID(gender*?weight)*games:winnerID(count))

4.5 Database Modeling

This final section describes the overall system by providing control logic for modeling

an entire database. This consists of applying CPA recursively to calculate the model

of the entire database.

We let 𝐷 represent a database consisting of many tables, 𝑇 . The relations between

the tables are known, so we let 𝒞(𝑇 ) represent the set of 𝑇 ’s children, and 𝒫(𝑇 )
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Orig. Derived

games winScore
loseScore

people weight ?weightgender

teams founded

people:teamID

dist

people:teamID(gender@MALE)
people:teamID(weight@0)
people:teamID(weight@1)
people:teamID(weight@2)
people:teamID(weight@3)
people:teamID(?weight@YES)

cov

people:teamID(gender*gender)
people:teamID(weight*weight)
people:teamID(?weight*?weight)
people:teamID(gender*weight)
people:teamID(gender*?weight)
people:teamID(weight*?weight)

count people:teamID(count)

games:winnerID

dist

games:winnerID(winScore@0)
games:winnerID(winScore@1)
games:winnerID(loseScore@0)
games:winnerID(loseScore@1)

cov
games:winnerID(winScore*winScore)
games:winnerID(loseScore*loseScore)
games:winnerID(winScore*loseScore)

count games:winnerID(count)

games:loserID

dist

games:loserID(winScore@0)
games:loserID(winScore@1)
games:loserID(loseScore@0)
games:loserID(loseScore@1)

cov
games:loserID(winScore*winScore)
games:loserID(loseScore*loseScore)
games:loserID(winScore*loseScore)

count games:loserID(count)

Table 4.2: The original modeled columns and derived columns of each table in the
sample database. These are shown in normal text. The bold helps organize the
columns by reference (table_name:foreign_key) and by aggregation (distribution,
covariance, or count).
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represent the set of 𝑇 ’s parents. Finally, we assume that our logic has access to CPA

and pre-processing method we have described. Other mathematical functions include

the 𝑐𝑑𝑓 function, 𝐹 , and the covariance Σ.

The CPA method works across a parent-child relationship. However, the children

may have more children, so we must apply the CPA recursively down all of the par-

ent’s descendants. We call this recursive approach Recursive Conditional Parameter

Aggregation, or RCPA. Algorithm 1 provides the logic for RCPA.

Algorithm 1 A recursive application of CPA to add derived columns to 𝑇 .

1: function RCPA(𝑇 )
2: for all 𝐶 ∈ 𝒞(𝑇 ) do
3: RCPA(𝐶)
4: 𝑇 ← CPA(𝑇 )
5: 𝑇 ← PreProcess(𝑇 )

Note that the CPA method returns the extended table. Line 4 saves the extended

table as 𝑇 . Finally, line 5 pre-processes 𝑇 to convert the values into numerical data.

The base case of this algorithm is for leaf tables, tables where 𝒞(𝑇 ) = ∅. Such tables

are guaranteed by our non-circularity constraint.

When the SDV creates the overall model, it applies RCPA and uses the results to

calculate the database model. The SDV’s modeling algorithm calls the RCPA method

on all tables without parents. Because RCPA is recursive, this ensures that all tables

in the database ultimately go through the CPA method. Afterwards, it calculates the

𝑐𝑑𝑓 functions, given by 𝐹 , as well as the covariances by using the Gaussian Copula

for all extended tables. The logic is given in Algorithm 2.
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Algorithm 2 The overall modeling logic for the SDV for database 𝐷.

1: function SDV-Model(𝐷)
2: for all 𝑇 ∈ 𝐷 s.t. 𝒫(𝑇 ) = ∅ do
3: RCPA(𝑇 )
4: 𝑐𝑑𝑓 ← ∅
5: 𝑐𝑜𝑣 ← ∅
6: for all 𝑇 ∈ 𝐷 do
7: 𝑐𝑑𝑓 ← 𝑐𝑑𝑓 ∪ 𝐹 (𝑇 )
8: 𝑐𝑜𝑣 ← 𝑐𝑜𝑣 ∪ Σ(Φ−1(𝐹 (𝑇 ))

9: return 𝑐𝑑𝑓 , 𝑐𝑜𝑣

The algorithm saves and returns all the 𝑐𝑑𝑓 and covariances of the tables. The

𝑐𝑑𝑓 functions are calculated using the table returned by the extend function. The

covariance is calculated after applying the Gaussian Copula to that table. Together,

the 𝑐𝑑𝑓 and covariances form the generative model for database 𝐷. When this function

returns, the user can control the amount and type of data to synthesize.

In summary, the overall database model saves the following for every table:

∙ The extended table (calculated by Algorithm 1)

∙ The cdfs of columns in the extended table (returned by Algorithm 2)

∙ The covariances of columns in the extended table (returned by Algorithm 2)
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Chapter 5

Data Synthesis

This chapter presents the details of the last step in the SDV’s workflow: Synthesizing

data based on the calculated database model.

We break up the synthesis into two categories:

∙ Model-Based: The user wishes to synthesize data relying on the model that

has been computed. For example, a user may want to synthesize the entire

database of their customer information.

∙ Knowledge-Based: The user already has some information about the data,

and wishes to synthesize the rest it. For example, the user may want to syn-

thesize information for particular types of customers (female, age 22, etc.).

The SDV can perform both types of synthesis. Each section of this chapter pro-

vides details for the two cases. The final section presents our API endpoints.

5.1 Model-Based

Model-based synthesis is based on being able to sample data from the calculated dis-

tribution and covariances. The modeling was learned using pre-processed numerical

values that represent numbers, datetime, categories, and missing values. Once we

sample from the model, we can factor in the primary key and foreign key relations to

synthesize tables, and ultimately the entire database.
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5.1.1 Sampling Numerical Values

All numerical values can be sampled from the distributions and covariances of the

columns. Call the set of 𝑐𝑑𝑓 functions 𝐹 , and the covariance matrix Σ. The method

to sample numerical values is given by algorithm 3. Assume that there are 𝑛 columns,

so that |Σ| = |𝐹 | = 𝑛.

Algorithm 3 Sampling numerical values from distribution and covariances of the
columns.

1: function Sample(𝐹 , Σ)
2: 𝑣 ← random 𝑛-dimensional Guassian vector
3: Find Cholesky decomposition, 𝐿𝐿𝑇 = Σ
4: 𝑢← 𝐿𝑣
5: 𝑥← [𝐹−1

0 (Φ(𝑢0)), 𝐹
−1
1 (Φ(𝑢1)), . . . 𝐹

−1
𝑛 (Φ(𝑢𝑛))]

6: return 𝑥

Line 4 of this algorithm uncovers a vector, 𝑢, in Copula space. Then, line 5 con-

verts it back to the original space by applying the inverse of the Gaussian Copula. The

returned vector, 𝑥, provides a value for all columns that were converted to numerical

data (numbers, categorical, datetime, and missing values).

Once the numerical value is returned, we can post-process it to form data that

looks like the original. This is accomplished by:

∙ Converting back from numerical values to datetime or categorical values

∙ Removing values for columns that were not originally in the table. This includes

all derived columns from CPA.

∙ Making values blank if they are supposed to be missing by looking at the binary

“Yes” or “No” value that is sampled.

5.1.2 Row Synthesis

Overall row synthesis relies on sampling. We use two separate methods depending on

if the row does or does not have any parents.

To synthesize a row with no parents (and therefore, no foreign key references), we

use the overall cdfs and covariance computed for its table, 𝑇𝐹 and 𝑇Σ. To synthesize
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a row with a parent, we recall that its parent row, 𝑝, has conditional parameters that

describe the cdfs and covariances for its children, 𝑝𝐹 and 𝑝Σ. These are the values we

use to generate the child. Both methods are shown in Algorithm 4.

Algorithm 4 Making a row based on information in the table 𝑇 or in the parent
row 𝑝.

1: function MakeRowFromTable(𝑇 )
2: 𝑖𝑑← random unique ID value
3: 𝑥← Sample(𝑇𝐹 , 𝑇Σ)
4: return [𝑖𝑑, 𝑥]
5:
6: function MakeRowFromParent(𝑝)
7: 𝑖𝑑← random unique ID value
8: foreign key ← ID of 𝑝
9: 𝑥← Sample(𝑝𝐹 , 𝑝Σ)

10: return [𝑖𝑑, foreign key, 𝑥]

The first function, MakeRowFromTable expects an extended table 𝑇 as input.

This can be either the original extended table, or a synthetic version of the extended

table. The second function MakeRowFromParent expects a single row, 𝑝, con-

taining all values from the derived columns as input. Similar to the first function, 𝑝

can be either an original row or a synthesized row. Note that both returned values

require post-processing to look like the original version of the data.

5.1.3 Database Synthesis

Synthesizing the entire database just consists of synthesizing multiple rows and child

rows recursively. We begin with a table that has no parents, and call the

MakeRowFromTable to generate rows for that table. Using the rows from that ta-

ble, we can create the children. Recall that each parent row, 𝑝, also stores the number

of children it contains, 𝑝𝑛. We can use this number to call MakeRowFromPar-

ent the appropriate number of times. Finally, we recurse to synthesize the children

of those children until the entire database is synthesized. The logic is shown by

Algorithm 5.

51



Algorithm 5 The overall database synthesis logic for the SDV.

1: function SDV-Synthesize(𝐷)
2: for all 𝑇 ∈ 𝐷 s.t. 𝒫(𝑇 ) = ∅ do
3: repeat
4: 𝑟𝑜𝑤 ← MakeRowFromTable(𝑇 )
5: MakeChildrenRows(𝑟𝑜𝑤)
6: until reached user-defined threshold
7:
8: function MakeChildrenRows(𝑝)
9: if 𝑝 has children then

10: repeat
11: 𝑐ℎ𝑖𝑙𝑑← MakeRowFromParent(𝑝)
12: MakeChildrenRows(𝑐ℎ𝑖𝑙𝑑)
13: until reached 𝑝𝑛 children

We envision that a majority of use-cases will be model-based. They will require

the user to synthesize the entire database, or a subset of tables in those databases.

5.2 Knowledge-Based

In this section, we briefly describe algorithms we use if the user wants to synthesize

data based on prior knowledge they already have. For example, if user is synthesiz-

ing data for internally testing an application, they may realize that the application

needs a balance of values. As a result, the user may decide to synthesize rows for

underrepresented female customers only.

This requires two modifications from the model-based method. First, the sampling

method from Algorithm 3 no longer works because some of the values included in 𝐹

and Σ have already been observed. This requires us to perform a special update to

uncover a new 𝐹 ′ and Σ′ for just the unobserved data. Second, it requires us to infer

what the parent might be based on the value that the user provides.

5.2.1 Sampling Updates

If some values are already observed and inputted by the user, then original sampling

will not work by itself, because it will return synthesized values for all columns. To
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account for observed data, it is necessary to update update the Σ matrix, as well as

the mean vector 𝜇. Initially, 𝜇 = 0 due to the Gaussian Copula process.

Let 𝑘 represent all the observed (known) variables, and 𝑢 represent the unobserved

(unknown) variables the user wishes to synthesize. Then we can rearrange the Σ

matrix and 𝜇 vector to bring all the unknown variables to the top:

Σ =

⎡⎣ Σ𝑢𝑢 Σ𝑢𝑘

Σ𝑘𝑢 Σ𝑘𝑘

⎤⎦
𝜇 =

⎡⎣ 𝜇𝑢

𝜇𝑘

⎤⎦ =

⎡⎣ 0

0

⎤⎦

With this configuration, the SDV can update Σ and 𝜇 with the known observations

to get a new Σ′ and 𝜇′ for just the unknown.

Σ′ = Σ𝑢𝑢 − Σ𝑢𝑘Σ−1
𝑘𝑘 Σ𝑘𝑢

𝜇′ = 𝜇𝑢 + Σ𝑢𝑘Σ−1
𝑘𝑘 (𝑜𝑏𝑠− 𝜇𝑘)

= Σ𝑢𝑘Σ−1
𝑘𝑘 𝑜𝑏𝑠

Where 𝑜𝑏𝑠 is the user-inputted vector containing the known values. Note that the Σ′

matrix has dimensions |𝑢| × |𝑢| and the 𝜇′ matrix has exactly |𝑢| elements. This is

because they only describe the relations for the columns with unobserved values.

Now, the SDV knows the new Σ′ and 𝜇′, along with the corresponding 𝑐𝑑𝑓 func-

tions for the unknown variables 𝐹𝑖, 𝑖 ∈ 𝑢. These new values can be used in the

sampling algorithm (Algorithm 3) with a slight modification: In step 4, we add the

𝜇 to the vector 𝑢. This will return all the values in the row that contain numerical

information, some of which is post-processed back into categorical or datetime infor-

mation. However, it does not include foreign key information, which is why we need

to perform inference to find the parent.
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5.2.2 Parent Inference

If the user has observed certain values for a row and the row has parents, then it is

necessary for us to infer what the parent row may be.

Recall that each parent row, 𝑝 contains conditional parameters that describe the

covariances, 𝑝Σ, and cdfs, 𝑝𝐹 , of its children, so the problem of picking a foreign key

simplifies into a log likelihood estimate. For the given data, 𝑥, the probability of 𝑥

belonging to some parent 𝑝 depends on 𝑝Σ and 𝑝𝐹 . This, in turn, is described by the

Gaussian Copula:

− log (ℒ𝑝(𝑥)) = − log Φ𝑝Σ

[︀
Φ−1 (𝑝𝐹0 (𝑥0)) ,Φ

−1 (𝑝𝐹1 (𝑥1)) , . . . ,Φ
−1 (𝑝𝐹𝑛 (𝑥𝑛))

]︀
The SDV chooses a parent row of 𝑥 from a weighted distribution of − log (ℒ𝑝(𝑥)), ∀𝑝.

The foreign key of 𝑥 is the primary key of parent 𝑝.

Note that the value Φ−1 (𝑝𝐹𝑖
(𝑥𝑖)) = ±∞ if 𝑝𝐹𝑖

(𝑥𝑖) = 1 or 0, making the over-

all log likelihood approach 0. This happens when the child’s data is out of bounds

for a parent. For example, if the conditional parameters in 𝑝 define 𝑚𝑖𝑛 and 𝑚𝑎𝑥

and the observed row is not in the interval, then 𝑝 is not a good candidate for a parent.

The overall SDV is able to perform many types of synthesis and inference based on a

combination of all the algorithms presented in this section. Given any set of parent

or children rows and columns, the SDV can ultimately synthesize the missing values

and return them to the user in the same format as the original table.

5.3 API Endpoints

When the SDV is ready for the synthesis stage, it provides the user with a database

object, from which the user can access individual tables with database.get_table(name).

The table object is used for the synthesis.

We have packed both model-based and knowledge-based synthesis in two synthesis

endpoints. The first is table.synth_row, that allows the user to synthesize a full row
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based on the table or its parent rows, while also performing updates based on observed

values. The second is table.synth_children, that allows the user to generate all

children based on a parent table. This method is a convenient packaging of the

MakeRowFromParent algorithm that allows the user to easily synthesize full

tables and databases.

5.3.1 table.synth_row

If they are synthesizing a full row, the user can just call the synth_row function

without any arguments. This generates all of the modeled data. The SDV generates

a unique primary key, as well as any textual data that is not modeled. As a final

step, the SDV formats the data to mimic the original. This means performing the

following checks and transformations:

1. If the column <x> has a corresponding categorical column ?<x> check its value.

If ?<x> = “NO” then the value should be missing. Set the value of <x> to null.

2. Remove all columns that were not in the original table.

3. If the original column was a datetime, take the numerical value and convert it

back to a datetime with a user-provided time regex.

4. If the original column was a category, perform the transform from Section 4.3.2

in reverse to recover the correct category.

As keyword arguments, the user can input any observed values for columns that

exist in the table. The SDV performs the appropriate inference to synthesize a full

row based on the input. These can include derived columns too, because derived

columns are modeled by the SDV. Table 5.1 shows some examples.

5.3.2 table.synth_children

When calling the synth_children function, the SDV synthesize entire tables that

represent children of the current table. The number of children generated for each

unique primary key of the table are based on the value of the derived count column.
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Command English Description
customer.synth_row() Synthesize a completely new customer
customer.synth_row(gender=F) Synthesize a female customer
customer.synth_row(?weight=No) Synthesize customer with missing weight

Table 5.1: Example commands using the synth_row function to create new stores.
Original columns and derived columns can be inputs to the system.

This function completely generates the all the columns of the children table, in-

cluding any other foreign key constraints that the children may have. This function

is intended to help the user generate entirely new databases. The user first calls

synth_row on every row in the parent table, and the synth_children recursively

until the entire database is synthesized.

This meets our usability for the SDV: Provide a simple interface for the user

that gives them control to synthesize data at any granularity. The cell and row

granularities are covered by the synth_row method, while the table and database

granularities are covered by synth_children.
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Chapter 6

Experiments

In this chapter, we perform experiments to validate the SDV’s ability synthesize

realistic data. The experiments in this section evaluate the SDV based on the two

motivations described in section 1.1. These are:

1. Populating Sample Databases

2. Scaling Data Science Efforts

For each of these areas, we designed an approach to observe the degree to which

the SDV accomplishes these goals. The first section discusses a subjective approach to

understanding what the SDV is capable of understanding when populating a sample

database. The second section describes a crowdsourced experiment that measured a

data scientist’s ability to work with anonymized data from the SDV.

6.1 Populating Sample Databases

The first motivation for building the SDV is so that industries can use a generative

model to populate sample databases with realistic data. There is generally a difference

in data quality between internal datasets from industry, and published datasets for

data science competitions. Therefore, it was necessary for us to find a real data

source to accurately observe how the SDV performs with the added complexity of a

real-world system.
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Table # Rows # Columns # Child Tables # Parent Tables
Employees 1818 206 4 0

Role 361 8 0 1
Promotions 24 28 0 1
Performance 1816 27 0 2
Assessments 9269 130 2 3

Assessment Details 4848 26 0 3
Questions 120 9 3 0

Question Details 10488 37 1 1
Objectives 1907 97 2 1

Objective Details 2193 27 1 1

Table 6.1: Summary statistics for each of the 10 tables in our sponsor’s HR dataset.

One of our sponsors, a major software consulting firm, provided us with a dataset

that we used to analyze the SDV. This section first describes the dataset in detail,

and then the method we used to synthesize the data. Finally, we describe some

observations and lessons learned from modeling the dataset.

6.1.1 Dataset

Our sponsor’s dataset came from human resources, and described the career goals and

reviews for 1818 of their employees. It also contained some information about their

quarterly reviews. There were 10 interconnected tables describing this information.

Table 6.1 provides some metadata about the tables, rows, columns, and relations.

This dataset contained more relations and interconnected tables than any publicly

available relational dataset that we could find.

6.1.2 Method

The ultimate goal was to use the SDV to synthesize data for each of the tables,

such that our sponsor could use the synthesized tables for their internal applications.

One particular application was used by supervisors to manage their subordinates’

status. Our sponsor agreed to plug in the synthesized data as the back-end for this

application, and then run the application using real-life scenarios:
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1. Querying employee information

2. Querying employee objectives

3. Adding and updating objectives

4. Querying a subordinate’s data by a supervisor

5. Adding and updating a subordinate’s data by a supervisor

We worked with our sponsor to discover and fix any problems in the synthesized data.

After sharing the synthesized data, our sponsors provided us with some feedback from

running the test cases. We noted down the problems, and manually fixed them until

the tests were able to run fully.

6.1.3 Results

Our sponsor was easily able to import the synthesized data, provided as CSV files, into

their database system. The SDV was able to synthesize primary keys and accurately

connect rows of different tables using them.

After running the test scenarios, all problems they reported fell into two categories:

Hard constraints, and self relations.

Hard Constraints

Hard constraints are logical constraints that hold true for every row or column in a

table. An example of this are columns that contain begin and end dates of perfor-

mance reviews for every user. It is generally assumed that the end date will be after

the start date.

From running the synthesized data, our sponsor found that some hard constraints

did not hold for about 5% of all rows. The particular constraints they cited were:

∙ Datetime value comparisons. The period begin date must be before the period

end date. The date of the review must be between the begin and end date.

∙ Missing value based on orderings. Supervisors must first submit their appraisals

in a particular order: objectives, assessments, feedback, and then the summary

for each subordinate. Thus, if assessment is missing (hasn’t been completed),
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then the feedback and final summary must be missing too. If the feedback is

missing, then the final summary must be missing.

∙ Exact number of foreign key references. Employees must have exactly 1 perfor-

mance review per supervisor for the quarter.

The SDV sometimes synthesizes rows that break these constraints due to the proba-

bilistic nature of its synthesizing algorithm. For example, the SDV correctly identifies

a positive covariance between a missing feedback cell and a missing final summary

cell. However, it treats that covariance as a probabilistically high likelihood of the

two values being missing together. When synthesizing many rows, a few of those rows

may represent an unlikely scenario.

To automatically fix the issue of hard constraints, it’s necessary to perform log-

ical checks on every subset of columns, and considering hard constraints when the

check holds for every row. While automatic, this comes with a significant increase in

processing time.

If there are only few hard constraints, the user can easily perform rejection sam-

pling on each synthesized row. Because a relatively few percent of synthesized values

break the constraints, the total time for synthesizing does not by much.

Self Relations

The second category of mistakes all occurred when the SDV was synthesizing new

employees. In addition to an employee ID, there were two additional columns that

contained information about the employee’s career counselor and direct supervisor.

The career counselor and supervisor were also employees, so the employees table had,

in effect, a relation to itself. In addition, the supervisor and career counselor had

some more non-circularity constraints: If person A was the supervisor of person B,

then B could not also be the supervisor of A.

None of these relations were properly captured by the SDV because it only models

foreign-key relations as being from a parent table to a different child table. A simple

solution to this would be to create a new table whose purpose is to connect the

columns of other tables. Note that a self-relation is a type of circular key dependence
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that the SDV assumes does not exist in the database. Even from manually inspecting

the data, it was difficult to discern the self-relation, as well as the supervisor hierarchy

that it represented.

Overall, we found that the SDV correctly synthesized most data successfully for

our sponsor’s use case of test data creation.

6.2 Scaling Data Science Efforts

In this section, we describe a crowdsourcing experiment designed to validate the

SDV’s ability to synthesize data for the purposes of anonymization.

The overall goal was to test a data scientist’s ability to work with datasets that

were synthesized. The ultimate question is if data scientists could work with synthe-

sized data as easily as the original data.

In order to test this, we found publicly available relational datasets with prediction

problems for a particular column. For each dataset, we performed the following steps:

1. Run the SDV on the dataset to create the generative model.

2. Use the model to synthesize data with varying degrees of noise.

3. Hire data scientists to solve prediction problem with a particular version of the

dataset (synthesized or the original).

This section describes the experiment process. First, we provide details about the

datasets, and the method used to synthesize the data. Second, we describe the

experimental setup with 4 conditions. Finally, we discuss preliminary results.

6.2.1 Datasets

We found a total of 5 relational datasets to use for the experiment. Two came from

an online relational dataset repository [9], and three from came from Kaggle [5].

Table 6.2 provides a summary of each dataset. The prediction problems for each

of the datasets was turned into a classification problem by discretizing the target

column’s values, if they weren’t originally categorical.
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Dataset Name Source # Tables # Classes

Biodegradability Relational Repo 5 5

Mutagenesis Relational Repo 3 2

Airbnb Kaggle 4 12

Rossmann Kaggle 2 8

Telstra Kaggle 5 3

Table 6.2: Summaries of the five relational datasets used for the crowdsourcing exper-
iment. The final column refers to the number of classes that the prediction problem
encompasses.

The rest of this section provides schemas and prediction problems for each of the

datasets.

Biodegradability

The first dataset describes various chemical compounds in terms of molecules, atoms,

and bonds [3]. Figure 6-1 shows the layout of this dataset.

Molecule
molecule_id

activity
logp

mWeight
activityNorm

logpNorm
mWeightNorm

Primary Key
Number

Categorical
Number
Number
Number
Number

Atom
atom_id

molecule_id
type

Primary Key
Foreign Key
Categorical

Bond
atom_id
atom_id2

type

Foreign Key
Foreign Key
Categorical

gMember
atom_id
group_id

Foreign Key
Foreign Key

Group
group_id

type
Primary Key
Categorical

Figure 6-1: The schema for the biodegradability dataset. Molecules consist of multiple
atoms. Two atoms are joined by bonds, and multiple atoms can be part of an atom
group.

The prediction problem is the biodegradability of each molecule in water, as mea-

sured by the column logp in the Molecule table. The logp value describes the

half-life of the biodegradation for the molecule. For this experiment the logp values

were discretized into 5 classes, and the objective was to predict the class that the

molecule belongs to.
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To create a synthetic database for this prediction problem, the SDV first synthe-

sizes new molecules. From those molecules, it synthesizes new atoms, and from those

atoms, it creates new bonds and group members. Note that is it is not necessary to

synthesize new groups, because a row in Group is not a child of molecule.

Mutagenesis

Similar to the biodegradability dataset, the mutagenesis dataset [4] is also related to

chemical compounds described by molecules, atoms, and bonds as shown by Figure 6-

2.

Molecule
molecule_id

ind1
inda
logp
lumo

mutagenic

Primary Key
Number
Number
Number
Number

Categorical

Atom
atom_id

molecule_id
element

type
charge

Primary Key
Foreign Key
Categorical
Categorical

Number

Bond
atom_id
atom_id2

type

Foreign Key
Foreign Key
Categorical

Figure 6-2: The schema for the mutagenesis dataset. The overall structure is the
same as for biodegradability, but there is no gMember or Group tables associated with
the dataset.

The objective of this prediction problem was to predict the mutagenic column

in the Molecule table. The term mutagenicity refers to the tendency of a chemical

to cause mutations in a strand of DNA. Thus the mutagenic column is binary, and

contains either a ‘yes’ or ‘no’ value.

Creating synthetic data was straightforward for the SDV: Create new molecules,

new atoms for those molecules, and new bonds for those atoms. Thus, all three tables

needed to be synthesized for the prediction problem.

Airbnb

The Airbnb datasets comes from a Kaggle competition [2] hosed by the lodging site

Airbnb [1]. It consists of web access log data from each of its users, as described in

Figure 6-3.
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Figure 6-3: The schema for the Airbnb dataset. Each user is an account made
on Airbnb, and each session describes a particular access made to the web-
site. The Countries table provides general information about the country, while
age_gender_bkt provides information about people traveling to those countries.

The prediction problem for this dataset is country_destination from the Users

column. This represents the country that a particular user booked a lodging for.

A total of 10 popular countries are labeled using a shortform (for example ‘ES’ for

Spain), while an 11th category called ‘other’ encompassed all non-popular countries.

Finally, a 12th category labeled ‘NDF’ (No Destination Found) indicated that the user

did not end up booking lodging using the site.

To create synthetic data for this prediction problem, the SDV synthesized new

users, and then synthesized new sessions for those users. It was not necessary to

synthesize Countries because it was the parent table of the table containing the

prediction problem. It was also unnecessary to synthesize age_gender_bkts because

it was not a child of Users.
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Rossmann

Kaggle’s Rossman Store Sales dataset was another competition [11] based on history

sales data for different stores in the franchise [10]. The Rossmann franchise is one of

the largest drug store companies in Germany, and the dataset provided information

about each individual store, as well as weekly details about it. This is described in

Figure 6-4.

Store
Store

SoreType
Assortment

CompetitionDistance
CompetitionOpenSinceMonth
CompetitionOpenSinceYear

Promo2
Promo2SinceWeek
Promo2SinceYear
PromoInternal

Primary Key
Categorical
Categorical

Number
Number
Number

Categorical
Number
Number

Categorical

Train
Store

DayofWeek
Date
Sales

Customers
Open
Promo

StateHoliday
SchoolHoliday

Foreign Key
Categorical
Datetime
Number
Number

Categorical
Categorical
Categorical
Categorical

Figure 6-4: The schema from the Rossmann Store dataset. Each store is a different
store location of the Rossmann franchise, and each row in Train corresponds to a
particular day in the store.

The prediction problem was the ‘Sales’ field in the Train table, that represented

the total revenue made by the store in that day. Because this was a continuous

variable, it was discretized into 8 bins.

Creating a synthetic version of the data meant synthesizing different stores first,

and then synthesizing the rows in Train for each of those stores.

Telstra

The final dataset was from a Kaggle competition with a dataset from Telstra [17], [16].

Telstra is a telecommunications service from Australia that provides mobile phones

and broadband internet. The layout of the dataset is described by Figure 6-5.
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Train
id

occasion
fault_severity

Foreign Key
Categorical
Categorical

log_feature
id

log_feature
volume

Foreign Key
Categorical

Number

event_type
id

event_type
Foreign Key
Categorical

resource_type
id

resource_type
Foreign Key
Categorical

severity_type
id

severity_type
Foreign Key
Categorical

Figure 6-5: The schema for the Telstra dataset. Each column named of ‘id’ repre-
sents a location and time. The information is split up by tables with meta-information
about the event, log, resources, and severity of a possible network outage.

The prediction problem is to classify the ‘fault_severity’ column of the Train

table. This is either ‘0’ for no network outage, ‘1’ for a few outages, or ‘2’ for

many outages.

To create a synthesized version for this data, it was only necessary to synthesize

new rows of the Train table, because this table had no children.

6.2.2 Crowdsourcing Experiment Setup

For each dataset, the SDV created four versions of data, each a condition for a within-

subjects experiment with hired data scientists. These conditions were:

1. Control: The subject is presented with the original version of the dataset.

2. No Noise (Synthesized): The subject is presented with the synthesized out-

put from the SDV’s algorithm.
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3. Table Noise (Synthesized): The subject is presented with synthesized noised

output from the SDV’s algorithm. The noise is introduced by taking every

covariance value, 𝜎𝑖𝑗, 𝑖 ̸= 𝑗 and halving it, effectively reducing the strength of

the covariance.

4. Key Noise (Synthesized): The subject is presented with synthesized noised

output from the SDV’s algorithm. The noise is introduced by randomly sam-

pling a primary key for the foreign key relation instead of performing an infer-

ence.

Subjects with some experience analyzing data were hired for the experiment.

These data scientists were assigned into one of four groups, which determined the

versions of the datasets. This is specified by Table 6.3.

Group Biodegradability Mutagenesis Airbnb Rossmann Telstra

0 control table noise key noise no noise control

1 no noise key noise control table noise no noise

2 table noise control no noise key noise table noise

3 key noise no noise table noise control key noise

Table 6.3: The versions of each dataset that were available to each experiment group.
While this setup may be biased to some ordering effects, it ensures that a single group
receives differently synthesized versions of different datasets.

All subjects were given a briefing in which they were told to write complex features

for each of the datasets. We used Feature Factory [18] as the interface for conducting

the experiment. Each dataset was exposed to the subjects as a separate iPython

notebook. The notebook contained some background information about the domain,

as well as access to a variable dataset that contained a list of table objects belonging

to the dataset.

Subjects were not told which version of the data they were given. In order to test

their features, subjects were provided with a method called cross_validate that

automatically computed their features and returned an accuracy score based on their
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version of the dataset. Finally, when subjects finished and submitted their features,

Feature Factory saved the script, which we used for our analysis.

6.2.3 Results

At the time of this writing, the experiment is still in progress. So far, we have

collected data from 15 different subjects, each of whom has completed 3 or 4 out of

the 5 datasets. As a result, we are still missing data to perform extensive analysis for

the Rossmann and Telstra datasets, so we focus on the other three.

When interpreting the submitted features, the three questions we wished to ex-

plore were:

∙ Did the synthesized data provide adequate feedback about how well the features

would predict real data?

∙ Was there a difference in the crowd’s performance in terms of predictive accuracy

when they were given original vs. synthetic data?

∙ On a subjective note, did the data scientists using synthetic data feel confused?

Answering each question required different analysis from the submitted features.

Adequate Feedback

If data scientists were to use synthesized data for all their work, they must be rea-

sonably certain that what they produce will perform just as well on the real version

of the data. This means that the synthesized data should provide accurate feedback

about the data scientist’s work.

Typically, data science or feature engineering is an iterative process. Data scien-

tists write features, check their performance, and attempt to improve based on the

feedback. While we don’t expect a direct mapping between performance of a feature

on synthesized data to real data, we do expect the following: Let 𝑓1 and 𝑓2 be two

different sets of features. Let 𝐴𝑠 be the accuracy function on the synthetic dataset,

and 𝐴𝑟 be the accuracy function on the real data. If 𝐴𝑠(𝑓1) ≤ 𝐴𝑠(𝑓2), then it should
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be the case that 𝐴𝑟(𝑓1) ≤ 𝐴𝑟(𝑓2). This means that if the data scientist submits 𝑓2

instead of 𝑓1, it will improve accuracy for synthetic and real data.

To test for this, we performed the following steps for each subject’s submitted

work:

1. Let 𝑐 be the original control dataset. Let 𝑣 be the version of the dataset that

this subject was given.

2. If 𝑐 ̸= 𝑣, split 𝑣 into a train set and validation set.

3. Use the train split to create a model using the submitted features, 𝑓 .

4. Record the accuracy of 𝑓 on the validation split. This is the synthetic score,

𝐴𝑠(𝑓).

5. Now use 𝑓 to predict values in the original datset, 𝑐. Record the accuracy as

the real score, 𝐴𝑟(𝑓).

Thus, for every subject who was not in the control group, we calculate a synthetic

score, 𝐴𝑠(𝑓), and a corresponding real score, 𝐴𝑟(𝑓) for their features. The synthetic

score simulates the data scientist’s estimate of how accurate their work is. The real

score is the actual accuracy.

Hypothesis : There is a strong correlation between the synthetic score and the

real score for each subject’s work. A generally positive correlation means that the

synthesized datasets give feedback that reasonably estimates the correct feedback.

This implies that the synthesized data can be used successfully for data science.

Figure 6-6 shows a scatter plot of the synthetic score vs. the real score for all

subjects across all datasets they submitted answers for. A linear regression test on

the data shows that the correlation is statistically significant (𝑟2 = 0.687, 𝑝 < 0.001).

Furthermore, the slope is 0.970 and 𝑦-intercept is 0.034, indicating that the synthetic

score closely predicts the test score.

Afterwards, we performed a 2-sample paired t-test on each submission’s synthetic

and accuracy score. The result showed that there was no significant difference between

the two scores (𝑡 = 0.812, 𝑝 = 0.427). This enables to conclude that 𝐴𝑟(𝑓) ≈ 𝐴𝑠(𝑓),

a tighter constraint than we had initially set out to prove. It supports our belief that
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Figure 6-6: Results for synthetic score on the synthesized datasets vs. real score on
the original dataset. The dotted line provides a reference for where synthetic score is
exactly equal to the real score. The control group’s data is not included in this plot.

synthetic data provides adequate feedback to the data scientist. We can conclude

that the data scientist can use the synthetic data to reasonably gage the usefulness

of their work.

Accuracy

Another concern is how a synthesized version of the dataset might affect the overall

accuracy of the model, as compared to the original dataset. Even if the generated

data provided consistent feedback to the subject, it would be of no use if the data

scientist wasn’t able to achieve high accuracy.

To test this, we performed a train-validate split on all versions of the dataset to

train models for each subject. To calculate the overall test score, we used an external

test set that was unavailable to the subjects.

∙ Non-Kaggle Data: We had taken out 25% of the data prior to inputting the

data in the SDV. This 25% becomes a test set because no data scientist in the

control group had access to it, and no synthetic data was created from it.
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Figure 6-7: A graph containing the median accuracies of the control vs. experimental
groups for all datasets.

Dataset 𝑡-statistic 𝑝-value
Biodegradability -0.558 0.701
Mutagnesis 1.15 0.139
Airbnb 0.372 0.364

Table 6.4: An accuracy comparison for control vs. non-control groups, broken down
by each dataset. Results from the 𝑡-test, as well as a one-sided 𝑝-value are provided
for each dataset.

∙ Kaggle Data: Kaggle provides an online test set for their competitions. Kaggle

does not provide the solutions, so we submitted the subject’s predictions and

recoded the score that Kaggle reported.

We compared the test scores between the control groups, and the other groups.

Hypothesis : The test scores between the control group and the other groups will

not be different. This would show that data scientists can use synthetic data to

submit work that is just as accurate as work done using the real data.

Figure 6-7 illustrates the differences in accuracies per dataset. Table 6.4 shows

preliminary results from a 2-sample independent t-test performed between the control

and experiment groups.

Overall, we find that there is no statistically significant difference between the

accuracy scores of subjects with control data and subjects with generated data. This
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confirms our belief that scientists can easily work with synthesized data as they can

with control data. It remains to be seen how the levels of noise in the synthesized

data affect the accuracy. By running the experiment for longer and collecting more

features, we will be able to perform this analysis at a future time.

Subject Findings

Finally we consider subjective feedback provided to us by the data scientists. In

particular, we observed the questions different subjects asked to see if they were

confused by the data they were provided.

A large majority of the questions were about technical issues with Feature Factory

or the experimental setup that were unrelated to the synthesized data. Apart from

asking how to register and submit their features, many subjects were also unhappy

that they did not have access to the target column’s data. We purposefully designed

the experiment in this way so that users could focus on writing features without

knowing what the actual answers are. However, in the future, perhaps we would

consider allowing data scientists to see the target column of the training data, in

order to mimic the workflow more closely.

Some users were confused about the relations that existed between the tables. One

subject in particular did not understand how two columns of the bond table could be

foreign keys to the atom table in the Mutagenesis dataset (Figure 6-2). Other users

defaulted to writing features from the target table only. We explicitly encouraged the

subjects to join the tables to explore the entire dataset.

Only 1 question was related to the actual values in the dataset. A subject in

group 3 indicated that the ages column in the Users table of the Airbnb dataset

(Figure 6-3) had unrealistic ages. This user’s data was synthesized with table noise.

However, upon closer inspection, it appears that the original data for Airbnb also had

unrealistic data in the ages column (max age was 2004). The SDV synthesized data

within the correct bounds when compared to the control data.

However, we did realize that the SDV’s bounds will not always be correct if we

are synthesizing children from a noised parent table. This is because the parent holds
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the 𝑚𝑖𝑛 and 𝑚𝑎𝑥 values of their children’s columns. If the parent is noised, then the

𝑚𝑖𝑛 and 𝑚𝑎𝑥 may represent unrealistic data.

Ultimately, we found that the SDV successfully modeled each of the relational datasets,

and used the generative models to synthesize data that data scientists could realisti-

cally work with. Though the experiment is still in progress, our preliminary results

show promise in using the SDV for data science purposes.
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Chapter 7

Conclusion

7.1 Key Findings

The SDV was successful for each of our goals for generalizability, usability, and accu-

racy. Here, we provide key takeaways from each of these areas.

The SDV can be applied generally to a variety of relational datasets.

During our experimentation phase, we applied the SDV to Biodegradability, Muta-

genesis, Airbnb, Rossmann, Telstra, and industrial datasets. The SDV was able to

model the relational data automatically for each of these datasets, with no changes

to the code.

The SDV can synthesize data at a variety of granularities for different

test purposes. Our work with the our sponsor, Mutability, and Rossmann datasets

required the SDV to synthesize the entire database, with all the tables and their

corresponding foreign key relations. The Biodegradability dataset required the SDV

to synthesize all tables except for one (the Group table), while ensuring that all key

relations between existing and synthesized tables were accurate. Finally, the Telstra

and Airbnb datasets required the SDV to synthesize a single table whose foreign keys

accurately referenced their parents. The versatility of SDV shows that it can be

adapted to many types of problems.

The synthetic output from SDV can replace original data for the pur-

poses of data science. As of May 18, 2016, our results indicate that data scientists

75



were able to work as effectively with the synthetic output as they were with the

original data. In particular, a regression between the cross validation and test score

showed that the synthetic data gave the correct feedback to data scientists when

validating their models (𝑝 < 0.001). A comparison in overall accuracies between the

original and synthetic data showed no statistically significant effects between the type

of data and the data scientist’s ultimate performance on the test set.

7.2 Contributions

In this thesis, we:

1. Designed CPA, an approach that builds a generative model for a table that has

external table dependencies. When layered recursively, this forms the RCPA,

which models an entire relational database.

2. Created a method for inference and synthetic data generation across multiple

tables. This uses covariance update rules for generative models as its foundation.

3. Implemented the SDV, an end-to-end system that allows users to build gener-

ative models for relational databases, and use the model to synthesize data.

4. Demonstrated that the SDV meets its goals for usability and generalizability

by using it to model 6 different datasets from a combination of sources: our

sponsor, the relational database repository, and Kaggle.

5. Evaluated the SDV’s ability to synthesize data for sample databases by working

a real-world complex relational database from our sponsor. Demonstrated that

the SDV synthesizes data that be used for testing.

6. Formulated metrics to quantify how much synthesized data affects the ability

to solve a prediction problem.

7. Performed experiment using Feature Factory, and analyzed submitted features

to demonstrate that synthetic output from SDV:

∙ gives effective feedback regarding its application to real data

∙ does not interfere with the data scientists’ ability to make accurate pre-

dictions
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∙ does not produce confusing data that impedes the data scientists’ progress

We conclude that the SDV successfully builds generative models for relational databases,

and is a viable solution for synthesizing data.
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