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Abstract

In this thesis, we present SenseML. SenseML is a general-purpose platform that en-
ables users to transform sensor data from the IOT domain into a machine learning-
ready format – what we call an attribute time series. It is a cloud-based platform
that can process signals using user-specified functions. It offers users immense flexi-
bility in integrating functions for transforming the data, while also providing parallel
execution as a service. In addition, we enable users to contribute to the framework
by submitting domain-specific signal processing functions. Such contributions are
integrated into the platform and are then part of the library, available for others to
use. We used the platform to generate 19 attribute time series for 9655 urban sound
signals. To generate these time series, the platform did 120 million computations in
approximately 140 minutes.
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Chapter 1

Introduction

As the Internet of Things (IOT) plays a growing role in our society, the amount of

data that must be processed and analyzed in order to keep things running smoothly

is constantly increasing. It is vital that the many industries in the IOT landscape be

able to efficiently analyze the data produced by their devices. They need to be able

to use this data to – on the one hand – improve settings for more everyday use, and

on the other to predict adverse events like looming machinery failure. In all cases,

developing these solutions requires machine learning.

Most of the datasets that businesses within these industries are working with are

made up of large, highly granular time series data collected using sensors. Generating

predictive and machine learning models from this type of data has been the focus of

both the academic and industrial communities the past two decades, if not longer.

Recent times have brought us a plethora of machine learning platforms meant to

help developers build, test, and deploy machine learning solutions. However, because

they aim to be general purpose, most of these platforms can only work with certain

representations of data. If a data scientist tries to use these platforms to work with

the aforementioned IOT data – which typically comes in the form of signals – they

will find that they have to process the data using signal processing functions before

they can feed it into the machine learning platform.

In this thesis, we present SenseML, a platform for performing signal processing

on IOT data and preparing that data for machine learning platforms. The name

15



SenseML represents the purpose of the platform – bridging the representational gap

between signals generated from sensors (Sense) and the input data representation

required by the machine learning platforms (ML).

It is daunting to build a general-purpose platform that will work for all IOT-related

problems. However, a few foundational insights made this work possible:

∙ Even when they come from many disparate domains, signals always fall into

certain categories, and can be characterized as such. These categories are not

domain-specific, and can be used to create processing functionality. We discuss

a few of these categories in Chapter 2

∙ When we examined the process data scientists use to transform raw signal data

into a machine learning-ready time series (a.k.a. a featurized format), we no-

ticed that everyone followed the same steps we list in Chapter 3. Regardless of

the source of the data – humans, turbines, cars, engines or even mobile phones –

the processing steps remain the same: they were merely named differently. This

allowed us to structure the process and develop a general-purpose platform.

∙ While we can create the structured process and stages that the data has to

go through, and enumerate the possibilities based on signal types, the specific

processing functions can vary significantly from domain to domain, or from one

signal to another. However, the signatures of how these functions are written

(inputs and outputs) are somewhat standard, allowing us to create abstractions

that make the platform extendable.

This thesis is organized into several chapters. In chapter 2, we give an overview of

the different types of signals that are commonly encountered in a domain. Chapter

3 outlines the steps involved in processing raw signal files, as observed across many

domains and applications. In Chapter 4, we introduce SenseML and its underlying

architecture. In Chapter 5, we introduce SenseML Client, a simple Python interface

built to run SenseML’s signal preprocessing steps. In Chapter 6, we demonstrate the

tool on a real world dataset. Finally, in Chapter 7, we conclude by providing a list

of future work that could be done to improve SenseML.

16



Chapter 2

Heterogeneity of Signal Sources

To develop a system that works for all possible IOT signals, we consider the multiple

heterogeneities involved: the differences in signal types, what domains they come

from, their possible uses, and the multitude of ways in which they are stored. In

this chapter, we present a review of different dimensions over which signals could be

characterized. In later chapters, we design solutions that address this heterogeneity.

2.1 Signal Types

There are certain salient properties of signals that allow them to be categorized.

The pre-processing and analyzing steps that must be performed on these signal vary

depending on its category.

2.1.1 Regular vs Irregular Sampling

A "regular" signal is one whose samples are recorded at fixed time intervals, and

which produces a regularly-spaced time series. Most signals that are obtained from

sensors can be expected to be regular, as sensors are programmed to take samples at

a pre-specified rate.

When a signal is irregular, its samples are not taken at fixed time intervals. Such

signals are often event-driven. For example, a signal that creates a battery-low alert

17



is only generated when the battery is low.

2.1.2 Periodic vs Aperiodic

A periodic signal has a pattern that repeats over a measurable time frame, often

produced by some underlying mechanism that has a periodicity. In electrical and

mechanical systems, most machines operate with rotational or cycle-based machinery.

Wind turbines rotate with a certain rpm; CPUs process information at a fixed clock

cycle per second. Thus, signals measured from these machines will be expected to be

periodic. In the case of physiological systems (e.g. electrocardiography), the periods

of these measurements often correlate with the heart rate.

Aperiodic signals, on the other hand, do not have a repeating pattern. This

category of signals encompasses the vast majority of sound recordings, such as acoustic

and surround sounds, as well as temperature measurements inside a building.

2.2 Domains

Most of the signal data that ends up being processed and analyzed is recorded using

sensors. Depending on the eventual application and the system being monitored,

different types of sensors are used for this recording. For example, when machinery

is being monitored, the most common types of signals recorded include:

∙ temperature

∙ pressure

∙ vibration

∙ fluid-property

∙ positional orientation

Other domains include: monitoring computing devices that measure usage of dif-

ferent resources within a machine (e.g. CPU or memory), monitoring human physi-

ology (in which case sensors measure different physiological aspects like heart rate or
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blood pressure), and activity monitoring (which captures our use of complex systems,

such as temperature and light settings in a home, sounds, and others). Often it is

important to identify what domain the signal is coming from, as this may influence

how it is processed. For example, a temperature signal is processed differently when

it is coming from a home, versus when it is coming from the high-pressure compressor

section of a turbine.

2.3 Applications

Industries that utilize sensor data are seeking two main objectives: event prediction

and event classification.

2.3.1 Event Prediction

The main goal in many industries is predict an outcome ahead of time. For example,

in the equipment industry, the goal is to maintain the condition of a particular piece

of machinery. In this context, the problem of interest is to predict if and when a

machine will experience a failure event, given a log of sensor data.

One applied example comes from wind turbine systems. Wind turbines are typi-

cally installed with sensors that measure vibrations, temperature, pressure, and posi-

tion. Over the past few decades, there has been growing interest in using this data for

damage detection in their propellers. [15] This type of condition monitoring and fail-

ure detection is also sought after in flight control systems [16], hard drive maintenance

[3], and physiological systems [21].

2.3.2 Event Classification

Another emerging objective is to recognize events of interest in a signal time series.

Environmental sound recognition and classification is a growing area of research, with

applications in multimedia retrieval and urban informatics [17]. In this application,

the challenge is to detect what objects or activities are creating the sounds, given the
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signal data.

2.4 File Formats

One of the challenges inherent in building a general-purpose system is the number of

disparate file formats that signals can be stored on, and thus could be presented to

the system. Different industries tend to have different specifications that work well

for their applications. Additionally, some file formats tend to contain more than just

raw data samples, and include annotations that may make processing simpler and

more efficient [14].

We can examine some file formats commonly seen in different industries:

∙ For multi-channel physiological data, the widely-accepted file format standard

is the European Data Format (EDF) [14].

∙ Sound files tend to be stored in wav or mp3 formats.

∙ The comma-separated values (CSV) format is a simple format that allows data

to be used in multi-application contexts.

For each of these file formats, tools are available to extract raw data samples.
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Chapter 3

From Raw Signals to Machine

Learning-Ready

For most applications, signal data obtained from sensors comes in the form of high-

resolution, often high-frequency time series data. In order to apply machine learning

techniques to this raw signal time series, it is first necessary to pre-process the data.

One of the main problems with using raw signal time series data is that the dataset is

often too large to efficiently process in a reasonable time frame. This enormous size is

a function of the frequency at which the data is sampled, also known as the "sampling

frequency." For instance, most sound files have a sampling frequency of 44.1kHz or

greater, and ECG signals are recommended to be sampled at a rate of at least 200-

500Hz [12]. Higher-frequency sampling, if processed carefully, can yield more accurate

results, so it is desirable to sample at a high frequency when possible. However,

machine learning algorithms, including time series modeling software packages, expect

a higher-level signal then what the sensors can produce.

The goal of the preprocessing steps is to reduce this dimensionality by (a) splitting

the signal data into segments, and (b) extracting any attributes that may indicate

the segment’s unique properties. More specifically, the steps involved are as follows:

∙ Decoding

∙ Segmenting
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∙ Validation

∙ Attribute Extraction

We found this to be a standardized process across many domains, regardless of

the signal type and end goal.

3.1 Decoding

"Decoding" is the process of taking the input signal data file and extracting the raw

sample data. For most common file formats, numerous tools and scripts exist to

enable this. As an example, SoX ([5]) is an open-source audio editing software that is

able to read raw sample data for a myriad of file formats. The PhysioNet Waveform

db software package ([6]) provides a way to read those file formats that are commonly

used for physiological signals (e.g. EDF).

Another component of decoding input data file into raw samples is filtering. Fil-

tering is the process through which raw signal data is “cleaned up” to remove any

potential noise. Finding the correct filter heavily depends on the domain and the

problem being solved. One of the most commonly used filters is a low-pass filter,

which removes any extraneous high-frequency noise from the signal. The problem

with defaulting to this choice is that sometimes, this higher-frequency data can be

indicative of a particular event that we are interested in predicting. For instance,

within hardware performance data, random high-frequency spurts can indicate an

imminent hardware failure. Therefore, if data scientists are given pre-processed, low-

pass filtered data in this context, they would be analyzing data that is missing one

of the markers of hardware failure.

In addition to the commonly-used, generic filters, domain- and problem-specific

filters may also be applied. In human speech analysis, “liftering” functions are used

to pinpoint different characteristics of the signal data ([13]).
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3.2 Segmenting

The main goal of segmentation is to split a signal into independent segments for

analysis. For periodic signals, this task is fairly straightforward. First, we make

a distinction between two fundamentally different signal type: signals produced by

rotating machinery, and signals captured from the human body. As most machines

operate with an underlying fixed mechanism that has some periodicity – for example,

350 revolutions per minute – machine signals have a period of consistent duration. We

can decide to split the signal on fixed intervals based on this period and the sampling

frequency.

For human body signals, we can no longer assume a uniform duration for each

period, and we must expect a lot more variety and irregularity. As we know, our

heart beats at different rates based on our activity. Thus, the task of splitting the

signals into their periodic segments is no longer as trivial, and requires more sophisti-

cated methods. For example, there exists an onset detection algorithm to detect and

separate individual heartbeats within ECG readings. The PhysioNet waveform dB

software package provides a commonly used implementation of such an algorithm.([6])

For aperiodic signals, proper segmenting methods can vary quite a bit depending

upon the domain and the use case. For example, a common approach for acoustic

event detection is to use overlapping window “frames” to define the segments. The

values for the segment length and the percent overlap between segments are fixed, and

normally fall under a specific range that has been agreed upon in the field. ([7],[10],[8])

3.3 Validation

After segmentation, we verify the validity of each segment. This step removes any

malformed segments that may affect the correctness of the resulting dataset after

attributes are extracted. Once again, the definition of validity varies depending on

the domain and the problem of interest. For ABP waveforms, one effective algorithm

for detecting abnormal beats is the Signal Abnormality Index (SAI) algorithm ([19]).
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3.3.1 Attribute Extraction

After segmenting the signal data, we can extract attributes for each of the segments.

The attributes we may be interested in fall under multiple categories.

– Statistical: This first category covers the statistical functions applied to the

data in the segment (e.g. min, max, average).

– Domain-specific: Other attributes are domain-specific. For example, in ECG

measurements, the distances between the QRST peaks in the signal are strong

indicators of the health of the heart.

– Time domain: These attributes capture properties of the signals in the time

domain, such as RMS value and crest factor.

– Frequency domain: These attributes capture properties of the signals in the

frequency domain. A transform is applied, and the attributes are calculated

on the transformed version of the signal. Examples include the spectral energy

present in a specific band.

– Intra-segment: Attributes within this last category capture the relationship

between data samples across multiple consecutive segments.

3.4 Two End-to-End Examples of Signal Processing

Pipelines

In this section, we will outline the signal preprocessing steps taken for two applica-

tions.

3.4.1 Physiological Signals

Electrocardiography (ECG):

∙ Decoding: Parsing the EDF(+) file into raw sample data, using PhysioNet wfdb

software.
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∙ Segmentation: Applying an onset detection algorithm to detect measurements

from individual heartbeats.

∙ Validation: Checking each heartbeat for validity.

∙ Attribute Extraction: Extracting relevant attributes, including crest, diastole,

kurtosis, pressure area, skewness, systole duration, and pulse.

3.4.2 Acoustic

Urban Sounds Classification:

∙ Decoding: Parsing wav, and mp3 files using SoX (or other software tools).

∙ Segmentation: Segmentation using a 40ms segment length with 50% segment

overlap.

∙ Validation: There is no need for validation.

∙ Attribute Extraction: Extracting spectral features (e.g. ZCR, Energy, and

Entropy) and MFCC.
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Chapter 4

SenseML

SenseML aims to be a cloud-based platform for processing IOT signals and preparing

them for machine learning, a step that currently takes up most of a data scientist’s

time during a predictive modeling task. Its goal is to provide:

– an easy-to-use parallel computing infrastructure for processing massive amounts

of signals.

– a set of simple, cloud-based interfaces that allow users to perform the aforemen-

tioned preprocessing steps, and

– a set of simple interfaces that allow domain experts and other users to integrate

their domain-specific processing functions.

When given a large repository of sensor data, SenseML outputs a low-frequency, “com-

pressed” attribute time series that is ready for machine learning. Users can integrate

this time series with a variety of machine learning approaches, including state-space

models and classification approaches. In this chapter, we describe the parallel

architecture that underlies SenseML.

4.1 Motivation

We begin by recognizing that although many of the signal processing tasks presented

in the previous chapter can be executed in parallel, no system currently exists to
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enable this. Additionally, we note that the intermediate representation of regular, low-

frequency time series preserves most of the information contained in the raw signal,

and is the most amenable representation for machine learning. Thus, processing these

signals and storing these pre-computed representations proves extremely beneficial in

scaling the machine learning studies that follow. The parallelization architecture in

SenseML is motivated by four main observations:

1. It is computationally expensive to process raw signal data samples, because the

data is often sampled at high frequencies. As a result, data scientists either

limit the scope of their studies to a subset of the data, or perform processing

that targets the problem at hand. For example, if a data scientist wants to

predict an acute-hypotensive episode, defined in a specific way, they will find

patients who have experienced this event, along with an equivalent number who

did not, and process these signals. They never revisit this step, even though it

may be beneficial to explore a different set of patients as a control, or to take

another look when the definition of the AHE changes.

2. In some applications, the choice of computational functions used for pre-processing

steps appears to be ad hoc, with little to no explanation as to why they were

chosen. A system that can execute steps quickly allows for the exploration of

multiple options available for these steps.

3. Although data scientists may decide to build a distributed system themselves,

it is non-trivial to build such a system for the preprocessing steps.

4. On the other hand, it is possible to build a general-purpose framework with well-

defined abstractions that supports parallelization of these steps across many

different domains within IOT, as we will show in this thesis.

SenseML utilizes Amazon Web Services ([1]) to create a distributed cloud system

designed to run the signal data preprocessing steps efficiently. As these steps are

inherently parallelizeable for different signal files, users get huge performance bene-
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fits from using a distributed architecture. SenseML also provides a simple Python

interface for our distributed preprocessing service.

Finally, SenseML provides a global repository of computational functions that can

be applied to IOT data. This allows people to browse these functions and explore

their hyperparameters, as well as enhance the repository with their own contributions.

4.2 Previous Work

Sense-ML was adapted from a similar project called PhysioMiner [11]. PhysioMiner

is a system designed for processing and analyzing physiological waveforms. Because

the underlying steps of segmentation and attribute extraction are similar between the

two systems, they have many design similarities. In particular, Sense-ML uses the

same cloud architecture and has the same module types as PhysioMiner.

Sense-ML differs from PhysioMiner in the following ways:

– It generalizes the system, allowing it to be used over the entire IOT domain. To

accomplish this, we had to develop mechanisms that allowed for the ingestion

of many different signal file types and formats.

– It provides a much broader library of processing functions to account for data

from different domains, including irregular and aperiodic signals.

– It finalizes the function-defining abstractions for each of the steps, enabling

users to write custom functions and integrate them with the framework.

– It allows users to integrate their own signal processing functions and contribute

to a repository of these functions.

4.3 System Architecture

Figure 4-1 outlines the overall system architecture of SenseML.
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Figure 4-1: The basic system architecture for SenseML. There are three main com-
ponents and their interactions - database, master-slave framework, and file storage

4.3.1 File Storage

The SenseML system’s main storage component uses an Amazon S3 bucket. In ad-

dition to storing user-provided data files, the S3 bucket also maintains the software

repository of pre-processing functions, and the SenseML jar.

To be able to run SenseML, the data and software in the S3 bucket must follow a

specific directory structure. We show the directory structure below:

data/

|-- entity_id

|-- file1

|-- file2

|-- entity_id2

...

repository/

|-- attributes/

|-- signal-decoders/
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|-- segmenters/

jars/

|-- main.jar

Here are the key highlights of this directory structure:

– Importantly, all signal files must be stored under the data/ directory. In this

folder, each entity-instance gets its own subfolder, which stores all the signal

files and meta-files associated with that entity-instance. For example, consider

a dataset from wind turbines. The data from Turbine8984 (entity-instance)

will be stored in a folder called Turbine8984/.

– All the software with functions for different steps of the signal processing should

be stored in the repository/ folder. If the user clones a SenseML repository

from github, s/he will have this folder readily available.

– The jars should be stored in a folder called jars/.

4.3.2 Database To Store Results

SenseML uses a NoSQL database called DynamoDB to store the output attribute

time series. The data is organized into a schema consisting of two tables: signals

and attributes.

The signals table will store information regarding the signal files. This includes

a randomly generated, unique signal_id, the file_path of the data file as stored

in the S3 bucket, and the entity_id to which the signal belongs. Note that multiple

signals can belong to the same entity_id. Table 4.1 shows an example of a valid

signals table.

entity_id signal_id file_path
203962 1TeA5Py data/203962/203962-5-0-1.wav
203962 ZDMSW3t data/203962/203962-5-0-0.wav

Table 4.1: Signals Table
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The attributes table will store the time-series data that results from processing

the signal file. Each row in this table represents a segment and contains a column

for each of the corresponding attributes, along with metadata extracted from that

segment. Table 4.2 shows an example of a valid attributes table.

signal_id segment_id interval_start duration frequency energy ... valid
RB8dlvt 0 0 556 44100 1437.0589 ... true
RB8dlvt 1 278 556 44100 1448.2890 ... true
RB8dlvt 2 556 556 44100 1672.176 ... true

Table 4.2: Attributes Table

4.3.3 Master/Slave Architecture For Distributing Compute

SenseML is built upon a master-slave architecture that uses Amazon SQS as its global

message queuing system. The different signal preprocessing steps (signal decoding,

segmentation, attribute extraction) are separated into parallelizable tasks, which are

then encoded as messages to this system. The master node is responsible for popu-

lating the message queue with these tasks.

Slave nodes, on the other hand, are responsible for completing the tasks in the

message queue. A slave node will continuously query the queue for available messages,

decode each message, and carry out the encoded task. After completing the task, the

slave will update the database with the result.

SenseML uses Amazon EC2 instances for slaves. These EC2 instances are created

using an Amazon Machine Image (AMI), which is a snapshot of an EC2 instance.

AMIs can be used to initialize multiple EC2 instances in the same state. We provide

a public AMI that contains the necessary software to run SenseML.

4.4 SenseML Modules

Sense-ML contains two modules responsible for completing the signal data prepro-

cessing steps: Population and Attribute Extraction.
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4.4.1 Population Module

The main objective of the population module is to segment the signal data files and

populate the database with information about the segments. Information that gets

populated in the attributes table includes:sample frequency, start time,interval,

validity and duration. At the same time, the signals table is also populated with

meta-information pertaining to the signal, if it does not already exist.

SenseML uses a segmenter function selected by the user to parse the data files.

Master

The master node first retrieves the list of data files from the S3 buckets. It then

creates a PopulatorMessage for each data file and pushes it to the SQS.

A PopulatorMessage consists of a DynamoDB Table prefix, the name of the S3

bucket, the filepath of the signal data, and the filepath and parameters of the chosen

segmenter function.

Slave

Upon receiving a PopulatorMessage, a slave node will:

1. download the specified signal data file and segmenter function from S3,

2. run the segmenter function on the signal data file with the provided function

parameters, if applicable, thus creating a file, and

3. parse the resulting segments and store them into the specified DynamoDB table.

4.4.2 Attribute Extraction Module

In this module, SenseML will take the resulting segments from the Population stage

and apply attribute extraction functions to each. The resulting attributes are stored

in the database. To run this module, users must provide both a signal decoder

function and a list of attribute extractors.
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Master

The master node will scan the DynamoDb tables created during the Population stage.

For each of the segments in the system, the master node creates a AttributeExtractorMessage

and pushes it to the SQS.

An AttributeExtractorMessage consists of a DynamoDb Table prefix, the name

of the S3 bucket, the filepath of the signal data, and the filepath and parameters of

the signal decoder and the attribute extractor functions chosen.

Slave

Upon receiving a AttributeExtractorMessage, a slave node will

1. download the specified signal data file and signal decoder function from S3,

2. use a signal decoder to read raw data samples from the data file,

3. segment the data samples based on the metadata stored in DynamoDb,

4. extract each of the attributes from the segments, and

5. update the segments into DynamoDB with the extracted attributes.
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Chapter 5

SenseML API

Usability is one of our key objectives, and drives the design of SenseML. We expect

three types of users, which we describe briefly below:

– Developers/Data scientists: These users will turn to SenseML to solve data

problems. They pick functions from the repository for different processing

stages, and would prefer to run SenseML on a high-level API.

– Domain experts: These users have the same goals as developers and data

scientists, but would like to modify the processing functions or integrate their

own, in order to make them as specific as possible to their domain. They may

or may not contribute to the repository.

– Contributors: These are users who will contribute to the repository by sub-

mitting to the library of processing functions.

To address the first and second user type, we developed a Python client, called

SenseMLClient. SenseMLClient interfaces with the Java archive that handles the

AWS cloud system, and runs the populator and attribute extractor modules.

5.1 SenseML Client

Users employ SenseML Client to run the different stages of SenseML by following

three simple steps:
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– Set the configuration and initialize the client

– Upload the data and the functions repository

– Run the SenseML stages

5.1.1 Set Configuration and Initialize Client

A user must set up different settings in order to initialize the SenseML client. (It

is assumed that this user has an Amazon account and corresponding credentials.)

Project configurations: There are a few project-related configurations that must

be specified for the client:

∙ senseml_jar: The relative path of the SenseML jar. The Python client needs

to know the location of the SenseML jar in order to run the AWS system.

∙ functions_dir: The relative path of functions repository. SenseML uses this

to validate selected functions and user input.

Note that these parameters are included in order to allow users to run the client

without restricting the usage to a specific directory.

AWS Credentials: Users must have an AWS account with valid credentials, along

with access to the S3, DynamoDb, SQS, and EC2 services. As an additional prereq-

uisite, users must install the AWS-CLI ([2]) with their credentials. The following is a

list of AWS parameters required for initializing a SenseMLClient:

∙ aws_key_name: Amazon AWS access key name

∙ aws_service_region: AWS Service Region

∙ ec2_iam_profile: Name of IamProfile to use for EC2 instances (must have

access to DynamoDB, S3, and SQS)

∙ s3_bucket: Name of S3 bucket used for storing data, functions, and other

project files
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∙ dynamodb_name_prefix: DynamoDB Table Name Prefix

∙ sqs_name_prefix: SQS Name Prefix

∙ ec2_num_instances: Number of EC2 worker instances to create

∙ ec2_instance_type: Amazon EC2 Instance type to launch, (options: r3.large,

r3.xlarge, r3.2xlarge, r3.4xlarge, r3.8xlarge, c3.large, c3.xlarge, c3.2xlarge, c3.4xlarge,

c3.8xlarge)

∙ ec2_instance_ids: List of EC2 instances ids to be reused

∙ ec2_private_key: Private key file for connecting to EC2 instances

1 from SenseMLClient import SenseMLClient

2

3 S = SenseMLClient(

4 aws_key_name = "senseml -demo",

5 aws_service_region = ’us -east -1’,

6 ec2_iam_profile = "senseml -test -role",

7 s3_bucket = ’senseml -demo’,

8 dynamodb_name_prefix = ’senseml ’,

9 sqs_name_prefix = ’senseml ’,

10 ec2_num_instances = 2,

11 ec2_instance_type = ’r4.large’,

12 senseml_jar = ’../ repository/jars/main.jar’,

13 functions_dir = ’../ repository/’

14 )

Listing 5.1: SenseMLClient initialization example

Listing 5.1 gives an example of how to initialize a new SenseMLClient. Upon

initialization, the client will upload the Sense-ML jar to the S3 bucket specified in

preparation for the upcoming modules.
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5.1.2 Upload the Data and Functions Repository

SenseML provides a repository of functions from which users can select their sig-

nal decoders, segmenters, and attribute extractors. The directory structure of the

repository is as follows:

repository

|-- attributes

|-- meta.json

|-- f1.py

...

|-- signal-decoders

|-- meta.json

|-- f2.py

...

|-- segmenters

|-- meta.json

|-- f3.py

...

As seen above, for each function type, there is also a meta.json file that contains

additional information about the function. The details of the meta.json file are dis-

cussed in section 5.2.4. In order to run any of the SenseML modules, users must

choose corresponding functions from this repository that work with the data they are

operating on.

Additionally, the functions repository must be synced to the Amazon S3 bucket

specified in the client configurations. This will allow remote SenseML workers to

query the S3 bucket and obtain the selected functions.

SenseMLClient provides a function for this. For example, if the repository were

accessible via the relative path "../repository/", users could simply call

S.uploadFunctionsRepository("../repository/")

in order to upload the directory into the S3 bucket specified in the client configuration.
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5.1.3 Running SenseML stages

Population Stage: SenseMLClient provides the following API for running the pop-

ulation stage.

S.populate(segmenter = (<selected_segmenter>, <hyperparams>),

init_tables = [True|False])

This function will segment any uploaded data files using the specified segmenting

function, and populate the DynamoDB tables. The init_tables argument indicates

whether the DynamoDb tables should be initialized at the beginning of the run.

In order to populate the database, users must select a way to segment their raw

data files. They can do this by searching through the functions repository for any

relevant segmentation algorithms. They must also provide any additional parameters

that the function states as arguments.

For example, consider the following truncated "audio.py" segmentation function:

1 import scipy.io.wavfile as wav , os

2

3 def segment(f, window_size , percent_overlap):

4 """

5 params:

6 window_size = size of window in milliseconds , float

7 percent_overlap = amount of frame overlap for segments ,

float

8 """

9 ...

10 return samp_freq , start_intervals , segments

Listing 5.2: Segmenter example: audio.py

This segmenter function requires that the arguments ’window_size’ and ’percent_overlap’

be supplied as hyperparameters. (Note: ‘f‘ is simply the input file required for all

segmentation functions). Thus, if a user wants to use this segmenter function, he or

she must also supply a dictionary with values for each of these function arguments.
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Listing 5.3 shows an example call of populate(), where valid hyperparameters are

supplied for the "audio.py" segmenter.

1 S.populate(segmenter = ["audio.py", {"windows_size": 23.2, "

percent_overlap": 0.5}])

Listing 5.3: Running the Populate Stage with the "audio.py" segmenter with

hyperparameters supplied

Attribute Extraction Stage: The API for running the attribute extraction stage is

S.extract_attributes(

signal_decoder = (<selected_signal_decoder>, <hyperparams>),

attributes = [

(<selected_attribute>, <hyperparams>),

...

]

)

For the attribute extraction stage, users must select a signal decoder, along with

the list of attributes they wish to extract from each of the segments obtained in the

population stage. The specifications for these functions are the same as those for

segmenter functions – users are required to include any hyperparameters that the

functions require.

Upon completion of the attribute extraction stage, the user’s DynamoDb tables

should consist of attribute timeseries for each of the signal files provided.

5.2 Creating your own functions

SenseML allows domain experts and contributors to to create their own signal de-

coder, segmenter, and attribute extractor functions. They can use such functions to

process their own data, and/or to contribute to the global library. Since we are at-

tempting to build a general-purpose framework for IOT with varied signal types and

application domains, enabling contributions and accumulating a global repository of
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signal processing functions is paramount for the success of this framework. When we

started this project, we only had attribute extraction functions for ecg and abp –

both physiological signals. We wanted to process acoustic signals, and found the an

implementation of corresponding attribute extraction functions at ([4]).

While designing the abstractions for these functions, we made sure that they

resembled as closely as possible the processing functions written by domain experts

without SenseML. This maximizes the chances of contribution, because it means that

these experts can integrate their functions into SenseML without performing any

additional work. In the following subsections, we present these abstractions, which

result in the specifications for different processing functions.

5.2.1 Signal Decoder

A valid signal decoder must have the following function signature:

1 def decode_signal(f):

2 ...

3 return data

Listing 5.4: Signal Decoder function template

where

∙ f is the input data filename

∙ data is a 2D array with dimensions num_samples × num_channels

5.2.2 Segmenter

A valid segmenter must have the following function signature:

1 def segment(f (, hyperparams , ...)):

2 ...

3 return samp_freq , start_intervals , segments , num_channels

Listing 5.5: Segmenter function template

where
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∙ f is the input data filename

∙ hyperparams are optional hyperparameters that must be provided

∙ samp_freq is the sample frequency of the data file

∙ segment is a list of 2D arrays with dimensions num_samples_in_segment ×

num_channels

∙ start_intervals is the corresponding start time for each of the segments

∙ num_channels is the number of channels found in the data file

5.2.3 Attribute Extractor

A valid attribute extractor must have the following function signature

1 def extract_attribute(data (, hyperparams , ...)):

2 ...

3 return attribute

Listing 5.6: Attribute Extractor function template

where

∙ data is a tuple of 2D arrays

∙ hyperparams are optional hyperparameters that must be provided

∙ attribute can be a single numeric value or a tuple/list/array of values, as

specified in the meta.json

5.2.4 Metadata

When creating a new function, it is important to create a new metadata entry in the

corresponding meta.json file. Metadata contains information about the function, and

is used by SenseML to assess how to process that function. Currently, the metadata

file for the attributes functions is the only one actively processed, as there has been

no operational necessity for the segmenter and signal decoder metadata.
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Metadata for an attribute extractor will consist of a JSON object with the follow-

ing parameters:

∙ domain: A keyword indicating which types of application the attribute might

prove useful to.

∙ description: A short description of the attribute.

∙ hyperparams: A list of hyperparameters required by the function.

∙ nChannels: The number of channels the function expects for the input data.

∙ nConsecutive: Information regarding whether the attribute operates on a single

segment, or a list of n consecutive segments.

∙ includeFS: A Boolean that indicates whether the function expects the sample

frequency to be provided as a parameter.

∙ output: Contains information about the number and naming of the outputs.

Listing 5.7 shows an example of a metadata json provided for a function that

extracts the spectral flux attribute.

1 {

2 "spectral_flux.py": {

3 "domain": "audio",

4 "description": "Computes the spectral flux feature of the

current frame",

5 "hyperparams": [],

6 "nChannels": 2,

7 "nConsecutive": {

8 "n": 2,

9 "position": "left"

10 },

11 "includeFS": false ,

12 "output": {

13 "type": "fixed",

14 "n": 1,
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15 "name": "spectral_flux"

16 }

17 }

18 }

Listing 5.7: Attribute Metadata for Spectral Flux

5.3 Interface Design Challenges

Many current API and interface decisions are motivated by attempts to replicate

functionality seen in other research papers. This section will give a discussion of

some of the challenges we faced, and the reasoning behind the design decisions we

made for the interface. For example, the decision to incorporate a metadata file was

conceived as a solution to several of the problems listed below.

5.3.1 Attribute Extractor Functionality

The template specification for attribute extraction has evolved along with the breadth

of functionality supported. The first iterations for the attribute extractor had a very

simple template:

1 def extract_attribute(data):

2 ...

3 return attribute

Listing 5.8: Attribute Extractor template in early iterations

where

∙ data is 2D array

∙ attribute is a single numeric value

Note that, in this version, the data is expected to be a single 2D array, and the

function is expected to return a single numeric value.
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Supporting attribute extraction on consecutive segments

Many applications involve attributes which require multiple consecutive segments

to compute in order to capture dynamic changes across time. For example, audio

signal analysis involves a feature called spectral flux, which is computed by taking

the Euclidean distance between two consecutive frames or segments.

Clearly, Listing 5.8 would not support functions like these. We would first need

to modify the input specification for data to support a tuple of 2D arrays, but sim-

ply changing the specification doesn’t guarantee that the functionality is supported.

There is no way for SenseML to figure out how many consecutive segments to process

and input into the function at one time solely by looking at the attribute function.

Therefore, we must require users to explicitly state the number of consecutive seg-

ments that a function requires, along with the position of the starting segment (left,

middle, or right). To enable this, we introduced the metadata file. When users create

a new function, they must specify, as metadata, how many consecutive segments the

function is expecting. SenseML can then read this file and provide the corresponding

amount of segments in the function.

Multiple Outputs

Listing 5.8 only supports functions that return a single value. However, it is sometimes

beneficial to extract multiple attributes in a single function. This may be the case

if a list of attributes all share a computationally intensive code base, or if certain

attributes depend on the computation of others. An example of this can be seen

when computing spectral centroid and spread. Computing the spectral spread of

a frame requires the prior computation of the spectral centroid. Thus, in order to

reduce the amount of redundant computation, it seems ideal to allow an attribute

extractor function to return both of these values at the same time. Additionally,

other attributes exist where the number of outputs depends on a hyperparameter.

One example is extracting n Mel-frequency cepstral coefficients (MFCC).

The main difficulty in allowing attribute extractors to return multiple outputs is
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resolving how to name these resulting attributes in a meaningful way. Previously,

SenseML only allowed users to provide a name that would correspond to a single

attribute function. Now, with the metadata file, we can support more sophisticated

ways to name attributes. Users can specify the output names for a function in the

metadata file using the following simple guidelines:

∙ For a function with a single output, users must provide a single output name.

∙ For a function with a fixed number of outputs (greater than 1), users must

provide a list of output names.

∙ For a function where the number of outputs depends on a hyperparameter, users

must provide a name to act as a prefix. SenseML will automatically generate

the output names by appending "_i" count to the prefix name.

Dealing with Multi-Channel Datafiles

Signal datafiles can often have multiple channels of data – for example, most sound

recordings tend to come as stereo audio files. Thus, SenseML must allow for the

processing of multi-channel data files.

One of the main challenges of supporting multi-channel data file processing is

figuring out how to robustly ensure that the attribute extraction functions selected

by a user is operable on the input data provided. SenseML’s flexible design allows

different attribute extraction functions to operate on independent assumptions about

the input data. Some attributes may only be extracted on monochannel signals,

while others may be computed using sophisticated methods on multiple channels.

Depending on the implementation, if there is a mismatch between the number of

channels a function expects and the number actually provided in the input data, the

attribute will fail to extract and the function will throw an error.

To address this, SenseML requires users to indicate the number of channels that a

function expects as an input in the metadata file. Before running each of the attribute

extraction functions, SenseML will read this metadata to validate that each of the
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attributes that the user provides expects the same number of channels as the input

data.

5.3.2 Usability Considerations

User function validation

It is important that SenseML validate the functions and inputs provided by users,

so that the system operates as intended. Because these functions are being run on

remote EC2 hosts, if they are syntactically or operationally incorrect, the program

running on the remote hosts will crash without the user’s knowledge. To remedy

this, SenseMLClient validates all user-provided functions on the user’s local machine

before launching remote EC2 instances. Additionally, Sense-ML provides an API that

allows users to test their functions and inputs on sample datafiles before committing

to the cloud system run.

S.validate_function(func, func_type, hyperparams, data_file)

Usability in creating functions

Another usability concern is whether and how to allow people to import random

Python modules when creating their functions. If users import a module or use

a software that the default AMI does not currently support, then the EC2 worker

instances would not be able to run the function. As of now, there is no way to

automate the incorporation of new libraries, as AWS does not provide an API to do

so. Thus, users will be required to update their AMI manually. This can be done by

following these rough steps:

∙ Launch an EC2 instance with the default AMI provided.

∙ Install any libraries or software required.

∙ Verify that the library is installed and runs properly.

∙ Use the Amazon EC2 console to create a new AMI from that EC2 instance.
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Users must then use this updated AMI id as a config to the SenseMLCLient.
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Chapter 6

Urban Sound Classification Dataset

To demonstrate Sense-ML, we decided to use a real world dataset and replicate data

preprocessing steps from [17]. We intend to release the resulting attribute time series

database for public use.

6.1 Urban Sounds Dataset

We are working with the UrbanSound dataset, which contains 27 hours of audio

with 18.5 hours of manually labelled sound occurrences over 10 sound classes: air

conditioner, car horn, children playing, dog barking, drilling, engine idling, gunshot,

jackhammer, siren, and street music.

We also tested the system on the UrbanSound 8k repository, which contains a

more tailored and processed dataset based on research done in [9]. In this research it

was determined that 4 seconds is a sufficient amount of time for subjects to identify

environmental sounds. To reflect this, each sound file in the UrbanSound8k dataset

consists of at most a 4-second data slice from a corresponding file in the UrbanSound

dataset.
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6.2 Preparing the S3 Bucket

In order to run SenseML, we must make sure that the data is stored in the correct

format on our S3 bucket. Each signal file must be of the format

s3://<s3-bucket>/data/<entity-id>/<file-id>

For the Urban Sounds dataset, the sound files are provided as

audio/<class-type>/<file-id>.wav

There is no notion of an entity, which is a required signal descriptor for populating

the database tables. Therefore, we decide to treat each individual signal as its own

entity, and use the filename (i.e. <file-id>) as the entity ID by mapping each file

from audio/<class-type>/<file-id>.wav to data/<file-id>/<file-id>.wav

For the Urban Sounds 8k dataset, the sound files are named according to the

following outline:

fold*/<file-id>.wav

where file-id = <entity-id>-xx-xx-xx. We map each file as named above to

data/<entity-id>/<file-id>.wav

After the file name remapping is completed for each sound file and the function

repository is uploaded as mentioned in the previous chapter, our S3 bucket fulfills the

requirements to run the Sense-ML stages.

6.3 Running SenseML

6.3.1 The Segmenter Function

One standard procedure for segmenting an audio signal in order to perform sound

classification is to use a fixed analysis frame. ([17], [10], [8]). This can be formalized

as a sliding window with a fixed percent overlap between frames (or segments). The

length of the window and the amount of overlap between frames are both chosen

depending on the relevant application.
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For our segmenting function, we decided to keep these two variables as hyper-

parameters, so that users would be able to modify them according to their desired

application. Listing 6.1 shows the implementation of the sliding window segmentation

algorithm, using scipy.io.wavfile.read() as the signal decoding function.

1 import scipy.io.wavfile as wav

2 import os

3

4 def segment(f, window_size , percent_overlap):

5 """

6 params:

7 window_size = size of window in milliseconds , float

8 percent_overlap = amount of frame overlap for segments ,

float

9 """

10

11 samp_freq , data = wav.read(f)

12 num_channels = data.ndim

13 num_samples = data.shape [0]

14 start_intervals = []

15 segments = []

16

17 window = int(samp_freq * window_size /1000.0);

18 offset = int((1- percent_overlap) * window)

19 num_segments = num_samples // offset

20

21 for i in range(num_segments):

22 x = i * offset

23 start_intervals.append(x)

24 segment = data[x:x+window]

25 segments.append(segment.reshape(len(segment), num_channels))

26 return samp_freq , start_intervals , segments , num_channels

Listing 6.1: audio.py segmenter function
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6.3.2 Attribute Extraction Functions

The field of audio classification has been studied for decades. The current techniques

involve extracting a variety of short term features such as energy, ZCR (Zero Crossing

Rate), spectral features, statistical moments, and MFCC’s. ([18], [10], [8]). We were

able to find an implementation of a majority of these features in a python library

called pyAudioAnalysis ([20]). As the library is open-sourced under Apache License,

we adopted the functions into our system while giving credit to the author, tyiannak.

We selected a subset of these features that would be representative of the differ-

ent types of attribute functions that SenseML supports. The following is a list of

attributes we decided to extract for our test run:

∙ Energy,

∙ Entropy,

∙ Spectral Entropy,

∙ Spectral Roll-off,

∙ Spectral Flux,

∙ Spectral Centroid and Spread,

∙ Zero Crossing Rate,

∙ MFCCs,

For each of these attributes, we had to create a new extractor function and add

an entry in the metadata file. We will walk through the process of creating and

integrating the functions into SenseML for a few of these to showcase the variety of

attribute functions that SenseML supports.

Spectral Entropy

Listing 6.2 shows the code for extracting spectral entropy.

52



1 import numpy as np

2 from scipy.fftpack import fft

3

4 eps = 0.00000001

5 ... # code snippet truncated

6 ...

7

8 def extract_attribute(data , numOfShortBlocks):

9 """ Computes the spectral entropy """

10 data = np.array(data [0])

11 data = np.mean(data , axis =1)

12

13 nFFT = len(data)/2

14 X = FFT(data , nFFT)

15 L = len(X)

16 Eol = np.sum(X ** 2)

17

18 subWinLength = int(np.floor(L / numOfShortBlocks))

19 if L != subWinLength * numOfShortBlocks:

20 X = X[0: subWinLength * numOfShortBlocks]

21

22 subWindows = X.reshape(subWinLength , numOfShortBlocks , order=’F’

).copy()

23 s = np.sum(subWindows ** 2, axis =0) / (Eol + eps)

24 En = -np.sum(s*np.log2(s + eps))

25

26 return En

Listing 6.2: Spectral Entropy Attribute Extractor Function

The main points to note about the spectral entropy function are

∙ it has a required hyperparameter: numOfShortBlocks

∙ the output of the function is a single variable

These points translate the following respective metadata:
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∙ "hyperparams": ["numOfShortBlocks"]

∙ "output": {"type":"fixed", "n": 1, "name":"spectral_entropy"}

Listing 6.3 is the resulting JSON object appended to the metadata file.

1 {

2 "spectral_entropy.py": {

3 "domain": "audio",

4 "description": "Spectral Energy",

5 "hyperparams": ["numOfShortBlocks"],

6 "nChannels": 2,

7 "nConsecutive": {

8 "n": 1,

9 "position": "middle"

10 },

11 "includeFS": false ,

12 "output": {

13 "type": "fixed",

14 "n": 1,

15 "name": "spectral_entropy"

16 }

17 }

Listing 6.3: Metadata for spectral_entropy.py

Spectral Centroid and Spread

The spectral centroid and spread function is an example where users may want to

extract multiple attributes with a single function. As seen in Listing A.1, the com-

putation of the spectral spread requires that the spectral centroid has also been

computed. Thus separating these two functions would result in a lot of redundant

spectral centroid computations.

In the metadata file, we need to specify that the function will return two attributes

and provide the names for these functions. We can do this by setting the output

metadata as follows
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"output": {

"type": "fixed",

"n": 2,

"name": ["spectral_centroid","spectral_spread"]

}

Another note is that the function is expecting SenseML to provide the sampling

frequency as an additional parameter. This is encoded in the metadata by setting the

includeFS parameter to true. Listing A.4 is the resulting metadata for the spectral

centroid and spread extracter.

Mel-frequency cepstral coefficients

The MFCC function is example of an attribute function where the number of outputs

is determined by a hyperparameter. To do this, we must indicate the output type

and naming prefix in the metadata.

"output": {

"type": "variable",

"namePrefix": "mfcc"

}

See Listing A.3 for the full code used for extracting MFCCs and Listing A.4 for

the corresponding metadata for the function.

6.3.3 Running Populator w/ Attribute Extraction

Now that we have defined the segmenters and attribute extractors, we can proceed

with running the SenseMLClient. We used 20 EC2 worker instances of type r4.large

(that was the maximum number of instances our account was allowed for). Listing

6.4 shows the populate function as used during the run.

1 S.populate(segmenter = ("audio.py", {"window_size": 23.2, "

percent_overlap": 0.50}) ,

2 sample_frequency = 44100,
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3 attributes = [

4 (’zcr.py’, {}),

5 (’energy.py’, {}),

6 (’energy_entropy.py’,{"numOfShortBlocks":10}),

7 (’spectral_rolloff.py’, {"coeff":0.9}) ,

8 (’spectral_flux.py’, {}),

9 (’spectral_centroid_and_spread.py’, {}),

10 (’spectral_entropy.py’, {"numOfShortBlocks":10}),

11 (’mfcc.py’, {"nceps":20})

12 ],

13 init_tables = True)

Listing 6.4: Running Populator with selected segmenter and attributes

Note that we are running the populate module with the optional attribute parameter

to do the attribute extraction at the same time instead of running the two stages

separately. Doing this is always faster than running the two stages separately.

6.4 Performance Evaluation

We ran two experiments, one for the UrbanSound dataset, and the other for the

UrbanSound8k dataset. For each signal file, we extracted the 19 attributes (3 normal,

4 spectral features, and 14 MFCCs) listed in 6.3.2.

Running SenseML on the UrbanSound8k datasets took approximately 30 minutes

to complete. This processed a total of 6.6 GB of raw signal data and generated total

of 2,477,291 segments from 8774 signals.

For the UrbanSound dataset, SenseML ran for approximately 2.2 hours, processing

20.5 GB of raw signal files and producing 6,040,163 segments from 9655 signals.

6.5 Challenges Faced

While running SenseML on the large repository of data, there were a few challenges

and limitations in the interface that had to be addressed.
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6.5.1 Different types of input files

When working with a vast repository of data, it is very likely that the data files

will not all be in the same file format. Although the UrbanSound8k repository only

consisted of wav files, the original UrbanSound repository had a combination of mp3

and wav files. This becomes problematic when segmenting the data files, as typically,

segmenter files are not tailored to read a majority of data file types. For the segmenter

function in Listing 6.1, when reading the raw signal file into a data array, we used

the scipy.io.wavfile python module, which is not able to parse mp3 data files. Thus,

during our run, we decided to only operate on wav files.

Additionally, even within the same data file format (e.g. wav), there were no

guarantees of a successful data file decoding. There were certain wav files that were

not readable with the scipy wavfile library. In particular, wav samples encoded as

4-bit MS ADPCM appear to require specific software to decode.

One solution is to have a more rigorous signal decoding component in each seg-

menter. However, this would require that you know the different data types for all the

data files you are working with, which may or may not be a reasonable assumption.

Another similar potential solution is to change the signature of the segmenters to

take in a data array as input instead of a file, thereby separating the signal decoding

and the segmenting process. This would mean that the segmenter is agnostic to the

filetype beforehand and will only operate on raw data samples.

The initial reasoning for having the file be the input to the segmenter was to give

users more flexibility in implementing the segmenting process. Having a file as input

would allow people to use third party software to run specific segmenting algorithms

that operate on raw data files.
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Chapter 7

Conclusion

SenseML provides a flexible and scalable solution to the problems of large scale IoT

sensor data preprocessing. SenseML maintains a repository of commonly used signal

preprocessing functions, allowing users to clean, segment, and extract attributes to

achieve a compressed, low-frequency attribute time-series across multiple domains

and applications. In this thesis we achieved the following objectives:

∙ Developed an end-to-end solution for the IOT signal processing.

∙ Established a framework to enable contributions from domain experts.

∙ Developed a SenseML client and a set of apis for different steps in a signal

processing pipeline.

∙ Demonstrated the platform on the UrbanSound dataset.

∙ Created the open source repository and established the infrastructure for soft-

ware sustainability.

7.1 Future Work

There is still a lot of work that can be done to improve Sense-ML. The eventual goal

is for a robust, easy-to-use platform for analyzing IoT signals.
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∙ Improve the contribution framework and testing experience.

∙ Identify interesting IOT datasets and create attribute time series databases.

∙ Enhance the repository of available functions.

∙ Provide apis to incrementally build the database.

∙ Provide apis to tune hyperparameters for the attribute and segmenter functions.

∙ Develop the machine learning functionality that works on top of the the at-

tribute time series in DynamoDB.
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Appendix A

Code Listing

1 import numpy as np

2 from scipy.fftpack import fft

3

4 eps = 0.00000001

5 def FFT(data , nFFT):

6 X = abs(fft(data)) # get fft

magnitude

7 X = X[0: nFFT] # normalize fft

8 return X / len(X)

9

10 def extract_attribute(data , fs):

11 """ Computes spectral centroid of frame (given abs(FFT))"""

12 data = np.array(data [0])

13 data = np.mean(data , axis =1)

14

15 nFFT = len(data)/2

16 X = FFT(data , nFFT)

17

18 ind = (np.arange(1, len(X) + 1)) * (fs/(2.0 * len(X)))

19

20 Xt = X.copy()

21 Xt = Xt / Xt.max()

22 NUM = np.sum(ind * Xt)

23 DEN = np.sum(Xt) + eps
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24

25 # Centroid:

26 C = (NUM / DEN)

27

28 # Spread:

29 S = np.sqrt(np.sum(((ind - C) ** 2) * Xt) / DEN)

30

31 # Normalize:

32 C = C / (fs / 2.0)

33 S = S / (fs / 2.0)

34

35 return (C, S)

Listing A.1: Spectral Centroid and Spread Attribute Extractor Function

1

2 {

3 "spectral_centroid_and_spread.py": {

4 "domain": "audio",

5 "description": "Spectral Centroid of Frame",

6 "hyperparams": [],

7 "nChannels": 2,

8 "nConsecutive": {

9 "n": 1,

10 "position": "middle"

11 },

12 "includeFS": true ,

13 "output": {

14 "type": "fixed",

15 "n": 2,

16 "name": ["spectral_centroid","spectral_spread"]

17 }

18 }

Listing A.2: Metadata for mfcc.py

1 import numpy as np

2 from scipy.fftpack.realtransforms import dct
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3 from scipy.fftpack import fft

4

5 eps = 0.00000001

6 def FFT(data , nFFT):

7 X = abs(fft(data)) # get fft

magnitude

8 X = X[0: nFFT] # normalize fft

9 return X / len(X)

10

11 def extract_attribute(data , fs, nceps):

12 data = np.array(data [0])

13 data = np.mean(data , axis =1)

14 nFFT = len(data)/2

15 X = FFT(data , nFFT)

16

17 fbank , freqs = mfccInitFilterBanks(fs , nFFT)

18

19 ceps = MFCC(X, fbank , nceps)

20 return ceps

21

22 def mfccInitFilterBanks(fs , nfft):

23 """

24 Computes the triangular filterbank for MFCC computation (used in

the stFeatureExtraction function before the stMFCC function call

)

25 This function is taken from the scikits.talkbox library (MIT

Licence):

26 https :// pypi.python.org/pypi/scikits.talkbox

27 """

28

29 # filter bank params:

30 lowfreq = 133.33

31 linsc = 200/3.

32 logsc = 1.0711703

33 numLinFiltTotal = 13

34 numLogFilt = 27
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35

36 if fs < 8000:

37 nlogfil = 5

38

39 # Total number of filters

40 nFiltTotal = numLinFiltTotal + numLogFilt

41

42 # Compute frequency points of the triangle:

43 freqs = np.zeros(nFiltTotal +2)

44 freqs[: numLinFiltTotal] = lowfreq + np.arange(numLinFiltTotal) *

linsc

45 freqs[numLinFiltTotal :] = freqs[numLinFiltTotal -1] * logsc ** np

.arange(1, numLogFilt + 3)

46 heights = 2./( freqs [2:] - freqs [0: -2])

47

48 # Compute filterbank coeff (in fft domain , in bins)

49 fbank = np.zeros ((nFiltTotal , nfft))

50 nfreqs = np.arange(nfft) / (1. * nfft) * fs

51

52 for i in range(nFiltTotal):

53 lowTrFreq = freqs[i]

54 cenTrFreq = freqs[i+1]

55 highTrFreq = freqs[i+2]

56

57 lid = np.arange(np.floor(lowTrFreq * nfft / fs) + 1, np.

floor(cenTrFreq * nfft / fs) + 1, dtype=np.int)

58 lslope = heights[i] / (cenTrFreq - lowTrFreq)

59 rid = np.arange(np.floor(cenTrFreq * nfft / fs) + 1, np.

floor(highTrFreq * nfft / fs) + 1, dtype=np.int)

60 rslope = heights[i] / (highTrFreq - cenTrFreq)

61 fbank[i][lid] = lslope * (nfreqs[lid] - lowTrFreq)

62 fbank[i][rid] = rslope * (highTrFreq - nfreqs[rid])

63

64 return fbank , freqs
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67 def MFCC(X, fbank , nceps):

68 """

69 Computes the MFCCs of a frame , given the fft mag

70 ARGUMENTS:

71 X: fft magnitude abs(FFT)

72 fbank: filter bank (see mfccInitFilterBanks)

73 RETURN

74 ceps: MFCCs (13 element vector)

75 Note: MFCC calculation is , in general , taken from the scikits

.talkbox library (MIT Licence),

76 # with a small number of modifications to make it more

compact and suitable for the pyAudioAnalysis Lib

77 """

78

79 mspec = np.log10(np.dot(X, fbank.T)+eps)

80 ceps = dct(mspec , type=2, norm=’ortho ’, axis=-1)[: nceps]

81 return ceps

Listing A.3: MFCC Attribute Extractor Function

1 {

2 "mfcc.py": {

3 "domain": "audio",

4 "description": "MFCC",

5 "hyperparams": ["nceps"],

6 "nChannels": 2,

7 "nConsecutive": {

8 "n": 1,

9 "position": "middle"

10 },

11 "includeFS": true ,

12 "output": {

13 "type": "variable",

14 "namePrefix": "mfcc"

15 }

16 }

17 }
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Listing A.4: Metadata for mfcc.py
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